首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
admin
2019-02-20
41
问题
设f(x)在[a,b]可导,且f’
+
(a)与f’
-
(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
选项
答案
【证法一】 由极限的不等式性质和题设知,存在δ>0使得a+δ<b-δ,且 [*] 于是 f(a+δ)>f(a),f(b-δ)>f(b). 这表明f(x)在[a,b]上的最大值必在(a,b)内某点取到,即存在ξ∈(a,b)使得[*]由费马定理知f’(ξ)=0. 【证法二】 f(x)在[a,b]必有最大值.若最大值在x=a(或x=b)取到,由最值点处的导数性质知,f’
+
(a)≤0(f’
-
(b)≥0),这与已知矛盾.因此f(x)在[a,b]的最大值不能在x=a及x=b取到,即[*]ξ∈(a,b)使得[*]是f(x)的极值点,f’(ξ)=0.
解析
因f(x)在[a,b]上可导,因而必连续,故存在最大值和最小值.如能证明最大值或最小值在(a,b)内取得,那么这些点的导数值必为零,从而证明了命题.注意,由于题设条件中未假设f’(x)连续,所以不能用连续函数的介值定理来证明.证明时不妨设f’
+
(a)>0且f’
-
(b)<0.
转载请注明原文地址:https://www.kaotiyun.com/show/LFP4777K
0
考研数学三
相关试题推荐
设A为n阶实对称矩阵,其秩为r(A)=r.(1)证明:A的非零特征值的个数必为r(A)=r.(2)举一个三阶矩阵说明对非对称矩阵上述命题不正确.
已知矩阵A=的特征值有重根,判断A能否相似对角化,并说明理由.
设A、B均为n阶实对称矩阵,且A的特征值全大于a,B的特征值全大于b,其中a,b均为实常数,证明:矩阵A+B的特征值全大于a+b.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设矩阵A=,已知齐次线性方程组Ax=0的解空间的维数为2,求a的值并求出方程组Ax=0的用基础解系表示的通解.
某公司投资20百万元建一条生产线,投产后其追加成本和追加收入(成本和收入对时间t的变化率,类似于边际函数的概念)分别为G(t)=5+2t2/3(百万元),E(t)=17一t2/3(百万元).试确定该生产线使用多长时间停产可使公司获得最大利润,最大利润是多少
曲线y=k(x2一3)2在拐点处的法线通过原点,求k的值.
设f(x)=x3一3x+q,其中常数q∈(一2,2),则f(x)的零点的个数为__________.
设A,B都是三阶方阵,满足AB=A—B,若λ1,λ2,λ3是A的三个不同特征值,证明:(1)λ1≠一1(i=1,2,3);(2)存在可逆阵C,使CTAC,CTBC同时为对角矩阵.
已知x的概率密度f(x)=,试求:(1)未知系数a;(2)X的分布函数F(x),(3)x在区间(0,)内取值的概率.
随机试题
下列树木中与八角金盘为同一科的是
患者,男,40岁。3年来出现劳累后胸闷、头晕,1小时前因胸闷自用硝酸甘油片后感头晕加重,并出现短暂黑嚎而来院。既往无高血压病史,无烟酒史,其父有类似病史。查体:血压120/70mmHg,脉率68次/分,双肺(-),心界不大,心律整,胸骨左缘3~4肋间可闻3
A.主要扩张冠状动脉,增加氧供B.以降低氧耗量为主C.增加心肌收缩力D.降低外周阻力E.降低前负荷硝酸酯类
抢救急性中毒患儿,首先要达到的护理目标是
患者,女,45岁,已婚。月经提前,量多、色淡、质稀,纳少便溏,气短懒言,舌淡苔白,脉缓弱。其治法是
哪种溶液不可用来冲洗伤口
沉井主要是靠井壁的( )来克服( )而下沉的。
商业助学贷款采用的担保方式不包括()。
目前,我们所称的“五大行”是指()。
A、Shorteningtheworkhours.B、Promotingtakingbusandwalking.C、Buildingmoreparks.D、Stimulatingthenationaleconomy.B对话中
最新回复
(
0
)