首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内可导,且3f(0)=f(1)+2f(2),证明:存在ξ∈(0,2),使得f′(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内可导,且3f(0)=f(1)+2f(2),证明:存在ξ∈(0,2),使得f′(ξ)=0.
admin
2018-04-15
59
问题
设f(x)在[0,2]上连续,在(0,2)内可导,且3f(0)=f(1)+2f(2),证明:存在ξ∈(0,2),使得f′(ξ)=0.
选项
答案
因为f(x)在[1,2]上连续,所以f(x)在[1,2]上取到最小值m和最大值M, 又因为[*]所以由介值定理,存在c∈[1,2],使得 [*]即f(1)+2f(2)=3f(c), 因为f(0)=f(c),所以由罗尔定理,存在ξ∈(0,c)[*](0,2),使得f′(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/L0X4777K
0
考研数学三
相关试题推荐
设L:+y2=1(x≥0,y≥0),过L上一点作切线,求切线与抛物线所围成面积的最小值.
设A,B及A*都是n(n≥3)阶非零矩阵,且AB=O,则r(B)=().
设某工厂生产甲、乙两种产品,没甲、乙两种产品的产量分别为x和y(吨),其收入函数为R=15x+34y一x2一2xy一4y2一36(万),设生产甲产品每吨需要支付排污费用1万,生产乙产品每吨需要支付排污费用2万.(I)在不限制排污费用的情况下,这两
设X的概率密度为且P{x≤1}=.(Ⅰ)求a,b的值;(Ⅱ)求随机变量X的分布函数;(Ⅲ)求Y=X3的密度函数
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
设A为m×n矩阵,r(A)=n,则下列结论不正确的是()
求由方程2x2+2y2+z2+8xz一z+8=0所确定的函数z(x,y)的极值,并指出是极大值还是极小值.设,求出可由两组向量同时表示的向量.
设二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值.如果A2+kE是正定矩阵,求k的取值范围.
计算二重积分.其中积分区域D由y轴与曲线
随机试题
中共十一届三中全会以来改革开放和社会主义现代化建设取得了哪些成就?这些成就的取得说明了什么道理?
Areyouplanningavacation?Ifyoulikehotandextremelydrysummers,gotoPhoenix,Arizona.Forhottemperaturesbutlotsof
滴定分析中,一般利用指示剂的突变来判断化学计量点的到达,在指示剂变色时停止滴定,这一点为:
A.刺痛拒按,固定不移,舌暗,脉涩B.气短疲乏,脘腹坠胀,舌淡,脉弱C.胸胁胀闷窜痛,时轻时重,脉弦D.面色淡白,口唇爪甲色淡,舌淡,脉细E.少气懒言,疲乏无力,自汗,舌淡,脉虚气陷证可见的症状是
某甲为个体运输公司的老板,长期为某大型国有酒厂运输货物,双方签订了长期的运输合同。某日,甲的朋友张某、何某找到甲提出,某厂生产的“MT”酒价值高,市场好销,若能乘运输过程中,使用调包的手段,将假酒换成真酒,既能保住甲的业务,又能另行销售谋利,岂不两全其美,
以证券市场过去和现在的市场行为为分析对象,应用数学和逻辑的方法,探索出一些典型变化规律,并据此预测证券市场未来变化趋势的方法通常被称为( )。
某公司2019年3月通过挂牌取得一宗土地,土地出让合同约定2019年4月交付。土地使用证记载占地面积为6000平方米。该土地年税额4元/平方米,该公司2019年应缴纳城镇土地使用税()元。
一切历史都是现实,现实之外别无历史。所谓“现实之外”同“世界之外”一样,只在纯语言学意义上和逻辑学意义上才有可能。现实之外并不是“非历史”,现实之前也不是“前历史”。我们不能说先有历史后有现实,而只能说有历史就有现实;既不能笼统地说历史先在于现实,也不能抽
简述逃税罪的构成要件。(2012年一法专一第32题)
ThecuisineofMexicocanbedatedbackto700B.C.,whentheareawaspopulatedbyIndianswhosestaplefoodwascorn.Inthec
最新回复
(
0
)