首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x3+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32. (Ⅰ)求常数a,b; (Ⅱ)求正交变换矩阵; (Ⅲ)当|X|=1时,求二次型的
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x3+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32. (Ⅰ)求常数a,b; (Ⅱ)求正交变换矩阵; (Ⅲ)当|X|=1时,求二次型的
admin
2014-11-26
103
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
一2x
1
x
2
一2x
1
x
3
+2ax
2
x
3
(a<0)通过正交变换化为标准形2y
1
2
+2y
2
2
+by
3
2
. (Ⅰ)求常数a,b; (Ⅱ)求正交变换矩阵; (Ⅲ)当|X|=1时,求二次型的最大值.
选项
答案
(Ⅰ)令[*]则f(x
1
,x
2
,x
3
)=X
T
AX.因为二次型经过正交变换化为2y
1
2
+2y
2
2
+by
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=2,λ
3
=b.由特征值的性质得[*]解得a=一1,b=一1. (Ⅱ)当λ
1
=λ
2
=2时,由(2E—A)X=0,得[*]当λ
3
=一1时,由(一E—A)X=0,得[*] [*] (Ⅲ)因为Q为正交矩阵,所以|X|=1时,|Y|=1,当|Y|=1时,二次型的最大值为2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Kl54777K
0
考研数学一
相关试题推荐
已知列向量组α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β2=α3+tα4,β4=α4+tα1,讨论t满足什么条件时,β1,β2,β3,β4也是方程组Ax=0的一个基础解系.
设A为n阶正定矩阵,证明:|A+E|>1.
证明:非齐次线性方程组(Ⅰ)有解的充要条件是齐次线性方程组(Ⅱ)的任意一组解y1,y2,…,ym必满足方程组(Ⅲ),其中
设平面区域D由x=0,y=0,x+y=,x+y=1围成,若I1=,则I1,I2,I3的大小顺序为().
设函数f(x)≥0在[1,+∞)上连续,若曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形的面积为S(t)=t2f(t)一1.
如图1-14-2所示,区域D是由曲线y=x3,y=一1,y=1及y轴围成的封闭图形,D1为D位于第一象限的图形,D2为D位于第三象限的图形,则以D为底,以z=x3+y为顶的曲顶柱体体积为().
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值;(2)由(1)的结论证明:当a>0,b>0,c>0时,
讨论在点(0,0)处的连续性、可偏导性及可微性.
设连续型随机变量X的概率密度为f(x)=,求(1)k的值;(2)X的分布函数F(x).
随机试题
有关食管憩室说法错误的是
原发性肝癌主要应鉴别的疾病是
A.链霉素B.氯霉素C.克林霉素D.红霉素E.四环素最先用于临床的氨基糖苷类药物是
根据《药品流通监督管理办法》,有关医疗机构购进、储存药品的叙述,错误的是
无风险利率对期权的时间价值的影响有()。Ⅰ.当利率提高时,期权的时间价值会减少Ⅱ.当利率提高时,期权的时间价值会增高Ⅲ.当利率下降时,期权的时间价值会增高Ⅳ.当利率下降时,期权的时间价值会减少
下列陈述中,对心理咨询谈话的特征描述正确的有()。
下列有关实践的主体与客体的相互作用的叙述,正确的是( )
TheInternetisanexcellentsourceforfindingmanytypesofinformationandforkeepingupwithnewdevelopmentsintheworld.
Thestatistics______thatlivingstandardsintheareahaveimproveddrasticallyinrecenttimes.
Moresurprising,perhaps,thanthecurrentdifficultiesoftraditionalmarriageisthefactthatmarriageitselfisaliveand【C1
最新回复
(
0
)