首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x3+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32. (Ⅰ)求常数a,b; (Ⅱ)求正交变换矩阵; (Ⅲ)当|X|=1时,求二次型的
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x3+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32. (Ⅰ)求常数a,b; (Ⅱ)求正交变换矩阵; (Ⅲ)当|X|=1时,求二次型的
admin
2014-11-26
88
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
一2x
1
x
2
一2x
1
x
3
+2ax
2
x
3
(a<0)通过正交变换化为标准形2y
1
2
+2y
2
2
+by
3
2
. (Ⅰ)求常数a,b; (Ⅱ)求正交变换矩阵; (Ⅲ)当|X|=1时,求二次型的最大值.
选项
答案
(Ⅰ)令[*]则f(x
1
,x
2
,x
3
)=X
T
AX.因为二次型经过正交变换化为2y
1
2
+2y
2
2
+by
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=2,λ
3
=b.由特征值的性质得[*]解得a=一1,b=一1. (Ⅱ)当λ
1
=λ
2
=2时,由(2E—A)X=0,得[*]当λ
3
=一1时,由(一E—A)X=0,得[*] [*] (Ⅲ)因为Q为正交矩阵,所以|X|=1时,|Y|=1,当|Y|=1时,二次型的最大值为2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Kl54777K
0
考研数学一
相关试题推荐
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由;
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:当a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A为m×n矩阵,E为m阶单位矩阵,则下列结论错误的是().
求微分方程xy’+y=xe2满足y(1)=1的特解.
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数.求随机变量(X,Y)的概率分布;
随机试题
下列选项中,属于服务商标的是()
消渴的典型症状有
乙醇拭浴后,体温降至何值应取下头部冰袋
硬胶囊剂的崩解时限要求为
某公司一次性向银行贷款800万元,贷款期限为5年,年利率为5%,若采用单利计算,则该企业第5年末应付银行的本利和为()万元。
通常所说的充分就业是指对劳动力的()。
惩办就是要一律严惩。()
如果所有的鸟都会飞,并且鸵鸟是鸟,那么鸵鸟会飞。从这个前提出发,需加上下面那一组前提,才能逻辑地推出“有些鸟不会飞”?
WhendoesthemanwanttoseeLoveStory?
A、Heisinteresting.B、Heiskind.C、Heisstrict.D、Heisbad-tempered.B对话中间部分,男士说在他解释了原因之后,他的老板又原谅了他;女士补充说,布朗先生是个善良的人。
最新回复
(
0
)