首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01|lnt|tndt(n=1,2,…)的大小,说明理由; (Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=0,1,2,…),求极限un。
(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01|lnt|tndt(n=1,2,…)的大小,说明理由; (Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=0,1,2,…),求极限un。
admin
2021-01-19
94
问题
(Ⅰ)比较∫
0
1
|lnt|[ln(1+t)]
n
dt与∫
0
1
|lnt|t
n
dt(n=1,2,…)的大小,说明理由;
(Ⅱ)记u
n
=∫
0
1
|lnt|[ln(1+t)]
n
dt(n=0,1,2,…),求极限
u
n
。
选项
答案
(Ⅰ)令f(t)=ln(1+t)-t,则当0≤t≤1时,f’(t)=[*]-1≤0,故当0≤t≤1时,f(t)≤f(0)=0。 所以0≤ln(1+t)≤t≤1,从而[1n(1+t)]
n
≤t
n
(n=1,2,…)。 又由|lnt|≥0,得 ∫
0
1
|lnt|[ln(1+t)]
n
dt<∫
0
1
t
n
|lnt|dt(n=1,2,…)。 (Ⅱ)由(Ⅰ)知,0≤u
n
=∫
0
1
|lnt|[ln(1+t)]
n
dt≤∫
0
1
t
n
|lnt|dt,因为 ∫
0
1
t
n
|lnt|dt=-∫
0
1
t
n
(lnt)dt [*] 所以[*]∫
0
1
t
n
|lnt|dt=0。 由夹逼定理得 [*]∫
0
1
|lnt|[ln(1+t)]
n
dt=0。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/KV84777K
0
考研数学二
相关试题推荐
eπ与πe谁大谁小,请给出结论并给予严格的证明(不准用计算器).
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求gˊ(x)并讨论函数gˊ(x)的连续性.
lnx对于同底数的两指数函数差的函数为求其极限,先用提公因式等法将其化为乘积形式,再用等价无穷小代换求之.解
A、左、右导数都存在B、左导数存在,但右导数不存在C、左导数不存在,但右导数存在D、左、右导数都不存在B
一子弹穿透某铁板,已知入射子弹的速度为v0,穿出铁板时的速度为v1,以子弹入射铁板时为起始时间,又知穿透铁板的时间为t1.子弹在铁板内的阻力与速度平方成正比,比例系数k>0.(Ⅰ)求子弹在铁板内的运动速度v与时间t的函数关系v=v(t);
设f〞(χ)∈C[a,b],证明:存在ξ∈(a,b),使得∫abf(χ)dχ-(b-a)f〞(ξ).
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
求极限:
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(2)记上题中的实根为xn,证明xn存在,并求此极限。[img][/img]
随机试题
测量细菌大小的单位是__________。
简述旅游市场细分的意义。
结核性积液下列哪项指标可明显增高
与慢性肾功能不全相近的病名是
精神病人在不能辨认或者不能控制自己行为的时候造成危害结果,经法定鉴定程序确认的,不负刑事责任,在必要的时候,由政府强制医疗。()
刘某的下列所得中,需要交纳个人所得税的有()。
巴拿马运河沟通的两个大洋是:
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P—1AP=________。
Whatashiningexamplethey______thepeopleofthewholecountry!
Althoughthefirstyearisreallyimportantforlanguagedevelopmentinchildren,majorlearningcontinuesthroughoutachild’s
最新回复
(
0
)