首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,证明:|E+A|>1.
设A是n阶正定矩阵,证明:|E+A|>1.
admin
2018-05-23
52
问题
设A是n阶正定矩阵,证明:|E+A|>1.
选项
答案
因为A是正定矩阵,所以A的特征值λ
1
>0,λ
2
>0,…,λ
n
>0,因此A+E的特征值为λ
1
+1>1,λ
2
+1>1,…,λ
n
+1>1,故|A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/K9g4777K
0
考研数学一
相关试题推荐
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为(1)将β用ξ1,ξ2,ξ3线性表出.(2)求Anβ(n为自然数).
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT.(1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t;(2)求可逆矩阵P,使P—1AP为对角阵A.
设f(x)在x>0上有定义,且对任意的正实数x,y,f(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
设有三张不同平面的方程ai1x+ai2y+ai3z=bi,i=1,2,3,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为()
求微分方程满足初始条件y(0)=1,y’(0)=1的特解.
四元方程组Aχ=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3(2,3,4,5)T,如果r(a)=3,则方程组Aχ=b的通解是_______.
设幂级数在x=0处收敛,在x=2b处发散,求幂级数的收敛半径R与收敛域,并分别求幂级数的收敛半径.
设顾客在某银行窗口等待服务的时间X(单位:分)服从参数为的指数分布.若等待时间超过10分钟,他就离开.设他一个月内要来银行5次,以Y表示一个月内他没有等到服务而离开窗口的次数,求y的分布律及P{Y≥1}.
交换积分次序=______。
设有一半径为R,长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
随机试题
我国《草原法》中规定的基本草原的范围包括()
胸膜下界的体表投影在肩胛下线相交于()
男,26岁,5天来鼻及牙龈出血,皮肤瘀斑。血红蛋白55g/L,白细胞10.0×109/L.血小板16×109/L。骨髓增生极度活跃,绝大多数细胞里清一色,胞浆内有大小不等颗粒及成堆Auer小体,过氧化酶染色强阳性。应首选的治疗
甲企业因基建需要竹签,与乙厂签订了一供货合同。合同约定乙供应甲竹签100捆,每根竹签单价1元,未约定总价。乙如约按惯例供应竹签100捆,每捆。100根,甲企业以自己认为每捆竹签为10根,现每捆竹签为100根为由,主张变更合同,遭乙企业反对,双方发生纠纷。对
某投资人投资303万元认购某开放式基金,认购金额在募集期间产生的利息为300元,其对应的认购费率为1%,基金份额面值为1元,则其认购费用和认购份额分别为()。
证券经营机构有下列()情形之一的,不得注册登记为保荐机构。
车船税的纳税义务发生时间,为购买车船发票记载日期的当月。()
浮世绘是日本传统的一种版画形式,代表人物有()。
A2-B2=(A+B)(A-B)的充分必要条件是________.
Myelderbrotherissimilarintemper______myfatherallthetime.
最新回复
(
0
)