首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t; (2)求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t; (2)求可逆矩阵P,使P—1AP为对角阵A.
admin
2016-04-11
78
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
(1)证明:对于正整数m,存在常数t,使A
m
=t
m—1
A,并求出t;
(2)求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m—1
α
T
=(α
T
α)
m—1
(αα
T
)=([*])
m—1
A=t
m—1
A,其中t=[*].(2)A≠O,A=A,1≤r(A):r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩,故矩阵A只有一个非零特征值,而有n一1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向量可取为(设a
1
≠0):ξ
1
= [*]的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有PAP=diag(0,0,…,0,[*]对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0Aw4777K
0
考研数学一
相关试题推荐
证明:当x≥0时,f(x)=∫0x(t-t2)sin2ntdt的最大值不超过.
设连续非负函数f(x)满足f(x)f(-x)=1,则=________.
设函数f(x)可导且0≤f’(x)≤,对任意的xn,作xn+1=f(xn)(n=0,1,2,…)证明:存在且满足方程f(x)=x.
设相似于对角矩阵,则a=________。
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E~2ααT)=B,则()
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
设有摆线(0≤t≤2π),求:(Ⅰ)曲线绕直线y=2旋转所得到的旋转体体积;(Ⅱ)曲线形心的纵坐标。
设f(x)在(-∞,+∞)上有定义且是周期为2的奇函数,已知x∈(0,1)时,f(x)=lnx+cosx+ex+1,则当x∈[-4,-2]时,f(x)的表达式.
设f(x)在(0,1)内有定义,且exf(x)与e-f(x)在(0,1)内都是单调增函数,证明:f(x)在(0,1)内连续.
随机试题
在精馏操作中,严重的雾沫夹带将导致塔压的增大。 ()
表示自动曝光控制的英文缩写是
口呼吸最易引发的牙龈炎是
患者,男,20岁。肌注青霉素后突然晕倒,血压测不到。应首先采取的抢救措施是
患者女,45岁,清洁工,患尿毒症入院。入院后家属一直陪伴身边,当得知需要长期透析治疗后,患者经常独自垂泪,默默发呆,不愿与人交流,最可能的原因是()
下列项目中,( )不用于表示盈亏平衡点。
下列不属于注册会计师承办的法定业务的是()
下列各项中,有关汇票与支票相互区别的表述中正确的有( )。
罗杰斯的“以学生为本”“让学生自发学习”“排除对学习者自身的威胁"的教学原则属于()。
BSP方法的产品/服务的过程定义步骤分成4步,下列()是对过程的总体描述。
最新回复
(
0
)