首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
admin
2019-05-11
45
问题
就a的不同取值情况,确定方程lnx=x
a
(a>0)实根的个数.
选项
答案
令f(x)=lnx-x
a
,即讨论f(x)在(0,+∞)有几个零点.用单调性分析方法,求f(x)的单调区间. [*] 则当0<x≤x
0
时,f(x)单调上升;当x≥x
0
时,f(x)单调 下降;当x=x
0
时,f(x)取最大值f(x
0
)=[*].从而f(x)在(0,+∞)有几个零点,取决于y=f(x)属于图4.14中的哪种情形. [*] 方程f(x)=0的实根个数有下列三种情形: (Ⅰ)当f(x
0
)=[*]时,恒有f(x)<0([*]∈(0,+∞)),故f(x)=0没有根. (Ⅱ)当f(x
0
)=[*](1+lna)=0即a=[*]时,由于x∈(0,+∞),当x≠x
0
=e
e
时,f(x)<0,故f(x)=0只有一个根,即x=x
0
=e
e
. (Ⅲ)当f(x
0
)=[*](1+lna)>0即0<a<[*]时,因为 [*] 故方程f(x)=0在(0,x
0
),(x
0
,+∞)各只有一个根.因此f(x)=0在(0,+∞)恰有两个根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/K5V4777K
0
考研数学二
相关试题推荐
设连续函数f(χ)满足:∫01[f(χ)+χf(χt)]dt与χ无关,求f(χ).
证明不等式:χarctanχ≥ln(1+χ2).
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P(X>uα)=α,若使等式P(|X|<x)=0.95成立,则x=()
设函数f(x)(x≥0)连续可导,且f(0)=1.又已知曲线y=f(x)、x轴、y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积值与曲线y=f(x)在[0,x]上的一段弧长值相等,求f’(x).
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式。
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的()
随机试题
乳牙龋病最好发的牙为
根尖周肉芽肿内的上皮成分绝大多数来自()
开放性颅脑损伤特有的临床表现是()
发热无汗,身体疼痛是()。
某电器设备厂筹资新建一生产流水线,该工程设计已完成,施工图纸齐备,施工现场已完成“三通一平”工作,已具备开工条件。工程施工招标委托招标代理机构采用公开招标方式代理招标。招标代理机构编制了标底(800万元)和招标文件。招标文件中要求工程总工期为365
下列情形免征耕地占用税的有()。
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=一f(ξ)cotξ.
已知二次型f(x1,x2,x3)=5x12+5x22+ax32-2x1x2+6x1x3-6x2x3的秩为2.(1)求参数a以及此二次型对应矩阵的特征值;(2)(数学一)指出方程f(x1,x2,x3)=1表示何种二次曲面.
Thefilm-awardsseason,whichreachesitstearfulclimaxwiththeOscarsinFebruary2013,haslongbeenonlylooselyrelatedto
下面哪个不属于从通信网络的传输对加密技术分类的方式
最新回复
(
0
)