首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3. ①求f(x1,x2,x3)的矩阵的特征值. ②如果f(x1,x2,x3)的规范形为y12+y22,求a.
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3. ①求f(x1,x2,x3)的矩阵的特征值. ②如果f(x1,x2,x3)的规范形为y12+y22,求a.
admin
2020-03-16
85
问题
二次型f(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a-1)x
3
2
+2x
1
x
3
-2x
2
x
3
.
①求f(x
1
,x
2
,x
3
)的矩阵的特征值.
②如果f(x
1
,x
2
,x
3
)的规范形为y
1
2
+y
2
2
,求a.
选项
答案
①f(x
1
,x
2
,x
3
)的矩阵为 [*] 记B=[*].则A=B+aE. 求出B的特征多项式|λE-B|=λ
3
+λ
2
-2λ=λ(λ+2)(λ-1),B的特征值为-2,0,1,于是A的特征值为a-2,a,a+1. ②因为f(x
1
,x
2
,x
3
)的规范形为y
2
+y
2
时,所以A的正惯性指数为2,负惯性指数为0,于是A的特征值2个正,1个0,因此a=2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Jb84777K
0
考研数学二
相关试题推荐
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
计算积分
求u=x2+y2+z2在=1上的最小值.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
已知齐次线性方程组其中。试讨论a1,a2,…,an和b满足何种关系时:[img][/img]方程组有非零解,在有非零解时,求此方程组的一个基础解系。
已知齐次线性方程组其中。试讨论a1,a2,…,an和b满足何种关系时:[img][/img]方程组仅有零解;
设函数y=y(x)可导并满足y’’+(x-1)y’+xy2=ex,且y’(0)=1,若=a,求a.
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程+(y+sinx)=0变换为y=y(x)满足的微分方程;
[2010年]设y1,y2是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则().
随机试题
患者喘逆上气,胸胀或痛,痰吐黏稠,伴有形寒身痛,身热烦闷,口渴,苔薄白或黄,质红,脉浮数或滑。治宜选用
补体激活旁路途径中不包括
下列不按五行相生顺序排列的是()
A.普氏立克次体B.伯氏考克斯体C.伯氏疏螺旋体D.冠状病毒E.新生隐球菌流行性斑疹伤寒的病原体是
在买卖活动中产品所有权发生转移的实体是()。
我国可持续发展战略所要巩固的“三湖”水污染治理成果中的“三湖”包括()。
出口茶叶,最大的问题是怕串味,因此应投保串味险。()
下列表述正确的有()。
从铁腕规范党内生活,到铁面问责严格执纪;从亮短揭丑的民主生活会,到重拳破除各种潜规则。党的十八大以来,守底线、讲原则、重法治成为新常态,这有利于广大党员:
TOEICTOEIC,whichstandsfortheTestofEnglishforInternationalCommunication,/measurestheabilityofpeopletocommu
最新回复
(
0
)