首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记 f(X)=XTAX/XTX,X∈Rn,X≠0 证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记 f(X)=XTAX/XTX,X∈Rn,X≠0 证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
admin
2018-07-27
106
问题
设λ
1
、λ
n
分别为n阶实对称矩阵的最小、最大特征值,X
1
,X
n
分别为对应于λ
1
、λ
n
的特征向量,记
f(X)=X
T
AX/X
T
X,X∈R
n
,X≠0
证明:二次型f(X)=X
T
AX在X
T
X=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
选项
答案
设λ
n
为A的最大特征值,X
n
为对应的单位特征向量,即有AX
n
=λ
n
X
n
,X
n
T
X
n
=1.在X
T
X=1条件下,可知,X
T
AX≤λ
n
,又X
n
T
AX
n
=X
n
T
λ
n
X
n
=λ
n
X
n
T
X
n
=λ
n
,故[*]X
T
AX=λ
n
=f(X
n
).类似可证[*]X
T
Ax=λ
1
=f(X
1
),其中λ
1
为A的最小特征值,X
1
为对应的单位特征向量.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JXW4777K
0
考研数学三
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
设f(x)在(-∞,+∞)连续,存在极限.证明:(Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
证明n维列向量α1,α2,…,αn线性无关的充要条件是
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
随机试题
贫血是临床上常见的由多种原因或疾病引起的一种症状,由于血液中与其功能有关的有形成分和无形成分减少,造成一系列的血液功能异常,请用相关的组织知识,叙述贫血病人的血象变化。
检验工件弧面弯制得准确与否,应用__________。
Excel中使用工作表中数据,可以创建嵌入式图表或独立图表。当工作表数据发生变化时,下列叙述正确的是()。
f(x)=的第二类间断点个数为()
A.丘脑的感觉接替核B.丘脑的髓板内核群C.下丘脑外侧区D.基底神经节与非特异投射系统有关的结构是
患儿,女,5岁。食欲缺乏2年余,近日症状加重。平素嗜零食,面黄肌瘦,夜寝不安。实验室检查:血红蛋白90g/L,红细胞3.0×1012/L,锌10gmol/L。引起该健康问题的直接病因是
电梯的安装,改造,维修,必须由电梯制造单位或者其通过合同委托,同意的依照《特种设备安全监察条例》取得许可的单位进行。电梯质量以及安全运行涉及的质量问题应由()负责。
(操作员:张主管;账套:103账套;操作日期:2014年1月1日)输入下列科目的期初余额。库存商品——甲产品:50000数量:100
下列哪些选项不属于家庭社会工作的要素?( )。
Peoplegotoseefilmsthere.Peoplestudythingshere.
最新回复
(
0
)