首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A、B为三阶非零矩阵,且A=。β1=(0,1,—1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 a,b的值。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,—1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 a,b的值。
admin
2018-12-29
48
问题
已知A、B为三阶非零矩阵,且A=
。β
1
=(0,1,—1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。求
a,b的值。
选项
答案
由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=0的三个解向量可知,向量组β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0, 解得a=3b。 由Ax=β
3
有解可知,线性方程组Ax=β
3
的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 (A,β
3
)=[*], 所以b=5,a=3b=15。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JXM4777K
0
考研数学一
相关试题推荐
已知A,B均为n阶正定矩阵,则下列矩阵中不是正定矩阵的是()
设平面区域D由曲线y=及直线y=0,x=1,x=e2围成,二维随机变量(X,Y)在D上服从均匀分布,则(X,Y)关于X的边缘密度在X=2处的值为_______.
设随机变量(X,Y)的分布律为已知事件{X=0}与{X+Y=2}独立,则a,b分别为()
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面),A2={掷第二次出现正面),A3={正、反面各出现一次),A4={正面出现两次),则事件()
设λ=2是非奇异矩阵A的一个特征值,则矩阵有一特征值为()
齐次线性方程组的基础解系中有()
设f(x)在x=a的某邻域内可导,且f(A)≠0,a≠0,求极限
求直线的公垂线方程.
求f(x,y)=(x一6)(y+8)在(x,y)处的最大方向导数g(x,y),并求g(x,y)在区域D={(x,y):x2+y2≤25)上的最大值、最小值.
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,且X与Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
随机试题
“利小便即所以实大便”的理论依据是()(1993年第4题;1998年第6题;2000年第3题)
下列叙述,哪项是症状护理技术()
A.茵陈、栀子B.黄连、吴茱萸C.黄连、木香D.苍术E.黄连、半夏、瓜蒌治痰热互结之结胸证,常用
关于中外法律制度中的习惯法,下列哪一表述是不正确的?(2010年试卷一第16题)
A市拟在本市西北方向10km处建设规划面积为5500亩的“向日葵工业园”,它是经A市所在的B省人民政府批准的省级开发区。该工业园区以绿色食品加工、轻纺服装、机械电子、新型建材与电子加工行业为主导产业。该工业园区规划布局是:北部为轻纺服装、新型建材企业的厂房
我国的第一个环境标准是()。
负有安全生产监督管理职责的部门依法对生产经营单位执行有关安全生产的法律、法规和国家标准或者行业标准的情况进行监督检查的职权不包括()。
2018年6月,达达商贸有限公司准备终止营业。经查实,达达商贸有限公司欠缴税款7000元,税务机关责令其限期10日内缴纳欠缴税款,期满后,达达商贸有限公司仍未缴纳税款并开始转移或者隐匿公司的财产。经过该县税务局局长批准,税务机关计划采取强制执行
A.howpupilsaretreatedinschoolsB.withyoungpeopleC.farfromD.lookatA.wemust【T13】______theinsecuritythatpa
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
最新回复
(
0
)