首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P—1AP=Λ。
已知是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P—1AP=Λ。
admin
2017-12-29
50
问题
已知
是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P
—1
AP=Λ。
选项
答案
A的特征多项式为 [*] =(λ一2n+1)(λ一n+1)
n—1
, 则A的特征值为λ
1
=2n一1,λ
2
=n一1,其中λ
2
=n一1为n一1重根。 当λ
1
=2n一1时,解齐次方程组(λ
1
E—A)x=0,对系数矩阵作初等变换,有 [*] 得到基础解系α
1
=(1,1,…,1)
T
。 当λ
2
=n一1时,齐次方程组(λ
2
E一A)x=0等价于x
1
+x
2
+…+x
n
=0,得到基础解系 α
2
=(一1,1,0,…,0)
T
,α
3
=(一1,0,1,…,0)
T
,…,α
n
=(一1,0,0,…,1)
T
, 则A的特征向量是k
1
α
1
和k
2
α
2
+k
3
α
3
+…+k
n
α
n
,其中k
1
≠0,k
2
,k
3
,…,k
n
不同时为零。 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JUX4777K
0
考研数学三
相关试题推荐
已知随机向量(X1,X2)的概率密度为f1(x1,x2),设Y1=2X1,Y2=,则随机向量(Y1,Y2)的概率密度为f2(y1,y2)=()
设试证明:P(A)+P(B)一P(C)≤1.
设函数且1+bx>0,则当f(x)在x=0处可导时,f’(0)=________.
已知问λ取何值时,β不能由α1,α2,α3线性表出.
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
设α1=[1,0,一1,2]T,α2=[2,一1,一2,6]T,α3=[3,1,t,4]T,β=[4,一1,一5,10]T,已知β不能由α1,α2,α3线性表出,则t=________.
求级数的和函数.
微分方程y"+2y’+2y=e-xsinx的特解形式为()
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=二次型g(x)=XTAX与f(X)的规范形是否相同?说明理由。
已知的一个特征向量。问A能否相似于对角矩阵?说明理由。
随机试题
修复体粘固前牙体组织消毒常用的消毒剂是()
细菌对青霉素产生耐药性的主要机制是
公共支出的意义表现为()等方面。
下列不属于情感态度价值观的特点的是()。
A、2B、10C、11D、19A3+11+23=37,7+19+11=37,则问号处数字为37-20-15=2,选A。
科研和科普虽然都以“科”为基础,但它们从思维方式到呈现方式都有_______。事实上,放眼人类科技史,能兼为科学大师和科普大师者,也是_______。填入画横线部分最恰当的一项是:
SPSS可以对输出的文件进行保存,保存的类型为
《刑法》第294条规定:组织、领导黑社会性质的组织的,处七年以上有期徒刑,并处没收财产;积极参加的,处三年以上七年以下有期徒刑,可以并处罚金或者没收财产;其他参加的,处三年以下有期徒刑、拘役、管制或者剥夺政治权利,可以并处罚金。犯前款罪又有其他犯
设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是__________.
LifeExpectancyintheLastHundredYearsAhundredyearsago,lifeexpectancyindevelopedcountrieswasabout47;intheea
最新回复
(
0
)