首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
admin
2018-08-03
62
问题
设A为m阶实对称阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵.试证:B
T
AB为正定矩阵的充分必要条件是B的秩r(B)=n.
选项
答案
必要性:设B
T
AB为正定矩阵,则对任意的实n维列向量x≠0,有x
T
(B
T
AB))x>0.即 (Bx)
T
A(Bx)>0 于是Bx≠0.因此,Bx=0只有零解,从而有r(B)=n. 充分性:因(B
T
AB)
T
=B
T
A
T
B=B
T
AB,故B
T
AB为实对称矩阵.若r(B)=n,则齐次线性方程组Bx=0 只有零解,从而对任意实n维列向量x≠0,有Bx≠0.又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)=x
T
(B
T
AB)x>0.于是当x≠0时,x
T
(B
T
AB)x>0,故B
T
AB为正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Irg4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)一f(x)=0在(0,1)内有根.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=.(1)求点M,使得L在M
设f(x)=x+x2+…+xn(n≥2).(1)证明方程f(x)=1有唯一的正根x;(2)求.
设a0=1,a1=一2,a2=(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设X1,X2,…,X12是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
设W={(x1,x2,…,xn)|x1一2x2+x3=0},求向量空间W的维数及一组规范正交基.
判别下列级数的敛散性(包括绝对收敛或条件收敛):
随机试题
_______是用于在不可靠的因特网上提供可靠的、端到端的字节流通信的协议。
意境
A、rubberB、curiousC、gunD、publicB
为什么胆碱酯酶抑制药可治疗阿尔茨海默病?
口腔流行病学常用的统计指标有
中医认为流行性腮腺炎的病因是( )
进行尸体护理,下列做法不妥的是
某工程项目施工中现场出现了图纸中未标明的地下障碍物,需要作清除处理。按照合同条款的约定,承包人应在索赔事件发生后28天内向工程师递交()
资金来源按企业使用时间的长短可划分为( )。
A、Findanassistanttodealwiththeproposalstogether.B、Squeezeafewhoursoutofthebusyscheduleforrest.C、Pickthebes
最新回复
(
0
)