首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设连续型随机变量X1,X2的分布函数为F1(x),F2(x),概率密度为f1(x),f2(x),若随机变量X的分布函数为F(x)=aF1(x)+bF2(x)(a,b为常数),X的概率密度为f(x),且EX,EX1,EX2均存在,下列4个等式: ①a
设连续型随机变量X1,X2的分布函数为F1(x),F2(x),概率密度为f1(x),f2(x),若随机变量X的分布函数为F(x)=aF1(x)+bF2(x)(a,b为常数),X的概率密度为f(x),且EX,EX1,EX2均存在,下列4个等式: ①a
admin
2021-04-16
58
问题
设连续型随机变量X
1
,X
2
的分布函数为F
1
(x),F
2
(x),概率密度为f
1
(x),f
2
(x),若随机变量X的分布函数为F(x)=aF
1
(x)+bF
2
(x)(a,b为常数),X的概率密度为f(x),且EX,EX
1
,EX
2
均存在,下列4个等式:
①a+b=1;
②f(x)=af
1
(x)+bf
2
(x);
③EX=aEX
1
+bEX
2
;
④X=aX
1
+bX
2
。
其中必成立的个数为( )
选项
A、1
B、2
C、3
D、4
答案
C
解析
由分布函数的性质知F(+∞)=aF
1
(+∞)+bF
2
(+∞)=a+b=1,①成立。
X的分布函数为F(x)=aF
1
(x)+bF
2
(x),两边求导得f(x)=af
1
(x)+bf
2
(x),②成立,由∫
-∞
+∞
xf(x)dx=∫
-∞
+∞
x[af
1
(x)+bf
2
(x)]dx=a∫
-∞
+∞
xf
1
(x)dx+b∫
-∞
+∞
xf
2
(x)dx,故EX=aEX
1
+bEX
2
,③成立。
④不一定成立,反例如下:
若X
1
~N(0,1),X
2
~N(0,1)且X
1
,X
2
相互独立,当a=b=0.5时,F(x)=0.5F
1
(x)+0.5F
2
(x)=0.5φ(x)+0.5φ(x)=φ(x),故X~N(0,1).
而0.5X
1
+0.5X
2
~N(0,0.5),X≠0.5X
1
+0.5X
2
,故必成立3个等式,选C。
转载请注明原文地址:https://www.kaotiyun.com/show/Ipx4777K
0
考研数学三
相关试题推荐
设随机变量X与Y都服从0-1分布,且X,Y相互独立,P(X=0,Y=0)一1/6,P(X=1,Y=0)=1/12,P(X=0,Y=1)=a,P(X=1,Y=1)=b,则().
)设二次型f(x1,x2,x3)=5x12+ax22+3x32-2x1x2+6x1x3-6x2x3的矩阵合同于(I)求常数a;(II)用正交变换法化二次型f(x1,x2,x3)为标准形.
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1).使得(ξ)≥8.
设α,β,γ均为大于1的常数,则级数()
设矩阵有解但不唯一。(I)求a的值;(Ⅱ)求可逆矩阵P,使得P一1AP为对角矩阵;(Ⅲ)求正交矩阵Q,使得QTAQ为对角矩阵。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
求不定积分
函数f(x)=(x2+x一2)|sin2πx|在区间上不可导点的个数是()
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
若an收敛,则级数
随机试题
下列哪种细胞可以分泌表面活性物质调节肺泡表面张力
A、脾B、胃C、肾D、肝E、肺“水火之宅”是指
处方中写白术芍应付
某市市政公司为安装管道,在街道上挖掘坑道,并于坑道两侧设置了障碍物和夜间警示灯。某夜,司机许某酒后驾车,撞毁了障碍物和夜间警示灯后逃逸。随后骑自行车经过的秦某摔人坑道中,造成粉碎性腿骨骨折,其损失应:()
拔出法是一种介于钻芯法和无损检测方法之间的检测方法,操作简单易行,有足够精度。()
使用最小二乘法估计出证券A的收益回归方程为:RA=10.2+1.3RI,假设市场有10%的预期回报,证券B的回归方程为RB=7.8+0.85RI,则B的收益率为()
调查显示,许多常常失眠的人往往是存在着白天的事(或工作)没有完成的情况。假设强迫症患者总是看不习惯事情被拖延或者不愿意做不完当天的事,那么,强迫症患者不大容易失眠。以下哪项如果为真,能够对上述论证提供最有力的支持?()
元认知学习策略包括四个方面,即:
以下关于视图的叙述中,错误的是______。
A、wereattackedatrefugeecamps.B、wereangryatdelaysindeparture.C、attackedCubanrefugeecampslastweek.D、willbeincre
最新回复
(
0
)