首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
admin
2021-02-25
57
问题
验证α
1
=(1,-1,0)
T
,α
2
=(2,1,3)
T
,α
3
=(3,1,2)
T
为R
3
的一个基,并把β
1
=(5,0,7)
T
,β
2
=(-9,-8,-13)
T
用这个基线性表示.
选项
答案
设A=(α
1
,α
2
,α
3
),要证α
1
,α
2
,α
3
是R
3
的一个基.只需证明A等价于E即可.且 x
11
α
1
+x
21
α
2
+x
31
α
3
=β
1
, x
12
α
1
+x
22
α
2
+x
32
α
3
=β
2
于是,以α
1
,α
2
,α
3
,β
1
,β
2
为列向量作矩阵,并对该矩阵施初等行变换,得 [*] 显然A等价E,故α
1
,α
2
,α
3
是R
3
的一个基,且 2α
1
+3α
2
-α
3
=β
1
, 3α
1
-3α
2
-2α
3
=β
2
.
解析
本题考查向量空间的基的概念和向量线性表示的概念.
转载请注明原文地址:https://www.kaotiyun.com/show/Ii84777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
设矩阵且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
对行满秩矩阵Am×n,必有列满秩矩阵Bn×m,使AB=E.
设自动生产线加工的某种零件的内径X(单位:mm)服从正态分布N(μ,1),内径小于10mm或大于12mm为不合格品,其余为合格品.销售合格品获利,销售不合格品亏损,已知一个零件的销售利润T元与X有如下关系:T=,问平均内径μ取何值时,销售一个零件的平均获利
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
a,b取何值时,方程组有解?
随机试题
肝硬化门脉高压的三大临床表现为___________、___________和______________。
高血压病的治疗下列哪项是错误的
早期诊断缺铁性贫血最灵敏的指标为
A.轧钢、炼钢、炼铁作业B.印染作业C.建筑、修路夏季施工D.印刷作业E.缝纫作业哪类属于高温高湿作业
对罗马法上的人格表述正确的是:()
依据《森林法》,森林划分为五类,其中防护林包括()。
某工业引进项目,基础数据如下:(1)项目的建设前期年限为1年,建设期为2年,该项目的实施计划为:第一年完成项目的全部投资40%,第二年完成60%,第三年项目投产并且达到lOO%设计生产能力,预计年产量为3000万t。(2)全套设备拟从
少年宫跆拳道班打算举办一场跆拳道比赛,并在赛前对甲、乙、丙、丁四位选手的体重进行称重,现经称重后结果如下:甲、乙的重量和丙、丁的一样;当将乙、丁互换后,甲、丁的重量大于乙、丙;乙的重量大于甲、丙各自的重量。如果上述判断为真,则以下哪项为真?
美国心理学家________提出了著名的多元智能理论。
Formostofhumanhistory,thedominantconcernsaboutenergyhascentered【M1】________onthebenefitside.Inadequacyofenergy
最新回复
(
0
)