首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明: (Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明: (Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
admin
2017-01-21
58
问题
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明:
(Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
选项
答案
(Ⅰ)由拉格朗日中值定理,对任意X∈(—1,1),x≠0,存在θ∈(0,1)使f(x)=f(0)+xf’(θx),(θ与x有关)。又由f"(x)连续且f"(x)≠0,故f"(x)在(—1,1)不变号,所以f’(x)在(—1,1)严格单调,θ唯一。 (Ⅱ)由(Ⅰ)中的式子,则有 [*] 由上式可得θ的表达式,并令x→0取极限得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IhH4777K
0
考研数学三
相关试题推荐
设其中g(x)有二阶连续导数,且g(0)=1,gˊ(0)=-1;(I)求fˊ(x);(Ⅱ)讨论fˊ(x)在(-∞,+∞)上的连续性.
已知线性方程组(I)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
已知yt=3et是差分方程yt+1+ayt-1=et的一个特解,则a=_______.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式
设A=β=当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
某商品进价为a(元/件),根据以往经验,当销售价为b(元/件)时,销售量为c件,市场凋查表明,销售价每降10%,销售量增加40%,现决定一次性降价.试问,当销售定价为多少时,可获得最大利润?并求出最大利润.
求极限
已知极限求常数a,b,c.
随机试题
《论语》的作者是()
A.一贯煎B.二仙汤C.半夏白术天麻汤D.天麻钩藤饮E.柴胡疏肝散
至明年间,全国创设省制,甘肃正式设省。()
补钙的首选食物是()
Mr.JoneshadalwayswantedtomakeatripintothemiddleofAfricatoshootwildanimals.【C1】______firsthehadnoenoughmone
(2015)南教育工作者通常是教师担任研究者,以学校或教师亟待改进的实际教育问题为研究内容,并以改进这些教育活动为目的的研究方法是()。
五十多年后回顾这段历史,杜老依然________,然而他也没有________土改实施过程中的缺陷,例如消灭富农和侵犯中农,以及没有严格依法保护劳动者财产利益。填入画横线部分最恰当的一项是:
贯彻新发展理念、建设现代化经济体系必须坚持供给侧结构性改革。为此,要持续推进“三去一降一补”,优化市场供求结构。坚持去产能、去库存、去杠杆、降成本、补短板,优化存量资源配置,扩大优质增量供给。继续化解钢铁、煤炭等行业过剩产能。下列举措属于“三去一降一补”内
ThefinancialcrisistookitstollandBritainslidintoasevereslumpin2008and2009,onebigworrywasthattheeconomywou
Allworkshopparticipantsareexpectedtoarrive______forallseminarsandclasses.
最新回复
(
0
)