首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f’’(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f’’(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
admin
2017-08-31
45
问题
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f
’
(0)=1,f
’’
(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
选项
答案
因为f
’’
(x)≥0,所以f
’
(x)单调不减,当x>0时,f
’
(x)≥f
’
(0)=1. 当x>0时,f(x)-f(0)=f
’
(ξ)x,从而f(x)≥f(0)+x,因为[*][f(0)+x]=+∞,所以[*]f(x)=+∞. 由f(x)在[0,+∞)上连续,且f(0)=一2<0,[*]f(x)=+∞,则f(x)=0在(0,+∞)内至少有一个根,又由f
’
(x)≥1>0,得方程的根是唯一的.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ILr4777K
0
考研数学一
相关试题推荐
[*]
(2003年试题,七)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程.
(2009年试题,18)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,,则f+’(0)存在,且f+’(0)=A.
(2002年试题,十)设A,B为同阶方阵.当A,B均为实对称矩阵时,试证(1)的逆命题成立.
(2004年试题,三)设有方程xn+nx一1=0,其中n为正整数.证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程z=h(t)-[2(x2+y2)]/[h(t)](设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数0.9),问高度为130(厘米)的雪堆全部融化需多少小时?
设,试证明:级数条件收敛.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所同成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒vn体积单位的均匀速度往该容器注水,并假设开始时容器是空的.写出注水过程中t时刻
设总体X服从正态分布N(μ,1),X1,X2,…,X9是取自总体X的简单随机样本,要在显著性水平α=0.05下检验H0:μ=μ0=0,H1:μ≠0,如果选取拒绝域R={||≥c}(Ⅰ)求c的值;(Ⅱ)若样本观测值的
随机试题
“五四”以来,郁达夫的小说多采用“________”的方式和第一人称的写法进行写作。
患者,男性,69岁,前列腺增生。前列腺增生症对患者的主要危害是
A.穿透作用B.荧光作用C.电离作用D.感光作用E.着色作用铅玻璃长期受X线照射产生
患者,女性,35岁。3天来不吃饭,只喝水,说有人一直在告诉她饭里有毒,要求家人陪同去派出所报案。从题干信息还能得知患者可能存在
下列有关公司债券上市交易条件的意见,正确的是:()
一工人在10米高的桥墩上施工属于()
(一)[背景资料]河北省某路桥有限公司通过竞标竞得河北唐山某桥梁工程,该路桥有限公司在承担该工程项目施工任务后,立即组建项目经理部,该项目经理部为达到安全文明施工,预防事故的发生,在施工前制订了施工现场安全生产保证计划。施工单位在施工
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
Earlyonemorning,morethanahundredyearsago,anAmericaninventorcalledEliasHowefinallyfellasleep.【R1】______Butheha
【B1】【B5】
最新回复
(
0
)