首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
计算下列二重积分: (1)计算xydxdy,其中D={(x,y)|y≥0,x2+y2≤1,x2+y2≤2x). (2)设f(x,y)=f(x,y)dxdy, 其中D={(x,y)|x2+y2≥2x). (3)设D:|x|≤1,|y|≤1,求|y-x|dxd
计算下列二重积分: (1)计算xydxdy,其中D={(x,y)|y≥0,x2+y2≤1,x2+y2≤2x). (2)设f(x,y)=f(x,y)dxdy, 其中D={(x,y)|x2+y2≥2x). (3)设D:|x|≤1,|y|≤1,求|y-x|dxd
admin
2017-12-31
65
问题
计算下列二重积分:
(1)计算
xydxdy,其中D={(x,y)|y≥0,x
2
+y
2
≤1,x
2
+y
2
≤2x).
(2)设f(x,y)=
f(x,y)dxdy,
其中D={(x,y)|x
2
+y
2
≥2x).
(3)设D:|x|≤1,|y|≤1,求
|y-x|dxdy.
(4)设D是由x≥0,y≥x与x
2
+(y-b)
2
≤b
2
,x
2
(y-a)
2
≥a
2
(0<a<b)所围
成的平面区域,求
xydxdy.
(5)设D={(x,y)|x
2
+y
2
≤x),求
dxdy.
选项
答案
[*] [*] (3)令D
1
={(x,y)|-1≤x≤1,-1≤y≤x},由对称性得 [*]|y-x|=dxdy=2[*](x-y)dxdy=2∫
-1
1
dx∫
-1
x
(x-y)dy =2∫
-1
1
[x(x+1)-[*] =∫
-1
π
(x
2
+1)dx=2∫
0
1
(x
2
+1)dx=[*]. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IHX4777K
0
考研数学三
相关试题推荐
设需求函数为p=a一bQ,总成本函数为C=一7Q2+100Q+50,其中a,b>0为待定的常数,已知当边际收益MR=67,且需求价格弹性时,总利润是最大的,求总利润最大时的产量,并确定a,b的值.
f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.证明:,η∈(a,b),使得
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
判别级数的敛散性.
设矩阵A的伴随矩阵,且ABA-1=BA-1+3E,求B.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3。(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
设二次型f=x12+x22+x32+2αx1x2一2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β。
计算二重积分I=dy.
当x→0时,微分方程(3x2+2)yˊˊ=6xyˊ的某个解与ex-1是等价无穷小,则该解为________.
随机试题
有关马蹄肾的病理特点,下列哪项错误
男性,68岁。慢性咳嗽,咳痰20多年,活动后气促伴喘息7~8年,加重2周。查体:神清,发绀,桶状胸,剑突下可见心脏搏动,双肺可闻干、湿啰音,心率120次/min,律不齐,有早搏,肝肋下2.5cm触及,质中等有压痛,肝颈静脉回流征阳性,双下肢水肿。血常规:W
城市、县城乡规划主管部门在受理建设用地规划许可的申请后,应依法在一定的时间内经过建设用地规划管理(),对建设用地项目的申请及有关事项、条件、内容等进行规划审核,提出规划审核结论。
背景在河谷较宽的山区河流上修建混凝土坝枢纽,河道宽且流量较大。施工期间,为确保大体积混凝土不出现温度裂缝,监理单位对施工单位提出了混凝土浇筑温度控制的要求。大体积混凝土温控措施主要有哪些?
某耐火等级为一级的大型商业建筑,主体地上共6层,地下共1层,建筑高度28m,每层建筑面积2000m2,每层设置了1个防火分区。按规定设置了自动喷水灭火系统,其中地上商业均采用格栅类通透顶棚,地下车库均不设顶棚,该商业建筑在地下1层设有288m3的消防和生活
下列关于债权人委员会的叙述,有误的一项是()。
甲股份有限公司(以下简称“甲公司”)于20×3年开始对高管人员进行股权激励。具体情况如下:(1)20×3年1月2日,甲公司与50名高管人员签订股权激励协议并经股东大会批准。协议约定:甲公司向每名高管授予12万份股票期权,每份期权于到期日可以8元/股的价格
无关变量
Ifyoucan’tresistthechancetoputonabet,blameyourinsula—aregionofyourbrain.Scientiststhinkthatwhenthisbrain
Itisnogooddwellingonthepast.Whatexistedorhappenedinthepastmayhavebeenbeautifulorexcitingandmaynowbringp
最新回复
(
0
)