首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,下列结论正确的是( ).
设A是n阶矩阵,下列结论正确的是( ).
admin
2017-12-31
75
问题
设A是n阶矩阵,下列结论正确的是( ).
选项
A、A,B都不可逆的充分必要条件是AB不可逆
B、r(A)<n,r(B)<n的充分必要条件是r(AB)<n
C、AX=0与BX=0同解的充分必要条件是,r(A)=r(B)
D、A~B的充分必要条件是λE-A~λE-B
答案
D
解析
若A~B,则存在可逆矩阵P,使得P
-1
AP=B,
于是P
-1
(λE-A)P=λE-P
-1
AP=λE-B,即λE-A~λE-B;
反之,若λE-A~λE-β,即存在可逆矩阵P,使得P
-1
(λE-A)P=λE-B,
整理得λE-P
-1
AP=λE-B,即P
-1
AP=B,即A~B,选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/IDX4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α1+α3,Aα3=2α2+3α3求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;
设λ1,λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1,λn的特征向量,记证明:二次型,(x)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值。
设有线性方程组证明:若α1,α2,α3,α4两两不相等,则此线性方程组无解;
设向量α=(α1α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT。求:A2;
设3阶矩阵A与对角矩阵相似,证明:矩阵C=(A—λ1E)(A—λ2E)(A—λ3E)=0.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解。
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为:求两个部件的寿命都超过100小时的概率。
设随机变量X的分布函数为其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)当β=2时,求未知参数α的最大似然估计量。
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。求(Ⅰ)Y的概率密度FY(y);(Ⅱ)cov(X,Y);
随机试题
干伸长度
系统测试包括以下_________三部分。①过程测试②窗体测试③模块测试④系统测试⑤验收测试
处方一般以当日有效,特殊情况下需延长有效期的,最长不得超过()。
海拔低于400米的区域面积约为()。
《民法通则》在债权一节规定的担保方式有保证、定金、违约金、抵押和留置。()
马克思主义哲学首次提出的理论有( )
主张“世界上除了运动着的物质之外,什么也没有”的观点,属于
改革开放和现代化建设事业进入从计划经济体制向社会主义市场经济体制转变的新阶段的标志是()
LetPandQbepointswhicharetwoinchesapart,andletAbethearea,insquareinches,ofacirclewhichpassesthroughPan
Theauthorarguedthatthefieldofsociologyhasbeenoverly(i)______,partlybecause,formanyscholars,theedgesofthesoc
最新回复
(
0
)