首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B. (2)设A=,B=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B. (2)设A=,B=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2019-08-23
85
问题
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
(2)设A=
,B=
,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE-A|=|λE—B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
n
, 因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 令P
1
P
2
-1
=P,则P
-1
AP=B,即A~B. (2)由|λE-A|=[*]=(λ-1)
2
(λ-2)=0 得A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ-1)
2
(λ-2)=0得 B的特征值为λ
1
=2,λ
2
=λ
3
=1. 由E-A=[*]得r(E-A)=1,即A可相似对角化; 再由E-B=[*]得r(E-B)=1,即B可相似对角化,故A~B. 由2E-A→[*]得A的属于λ
1
=2的线性无关特征向量为α
1
=[*]; 由E-A→[*]得 A的属于λ
2
=λ
3
=1的线性无关的特征向量为 [*] 由2E-B→[*]得B的属于λ
1
=2的线性无关特征向量为β
1
=[*]; 由E-B→[*]得 B的属于λ
2
=λ
3
=1的线性无关的特征向量为 [*] 再令P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/I7N4777K
0
考研数学二
相关试题推荐
证明:
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
已知A=可对角化,求可逆矩阵P及对角矩阵∧,使P-1AP=A.
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设向量组线性相关,但任意两个向量线性无关.求参数t.
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
随机试题
结核病采用HRZE方案的化学治疗,可获得显而易见的效果与下列哪项有关
腹部手术后切口化脓性感染,错误的处理是()
在离心泵安装、计算设备质量时,非直联泵的总质量包括( )的质量。
现金管理是对现金和流动资产的日常管理,其目的在于()。Ⅰ.满足日常支出的需求Ⅱ.满足财富积累的需求Ⅲ.满足应急资金的需求Ⅳ.满足未来消费的需求
某人存款10000元,月息二厘五毫,则年末可获得利息()元。
材料四:阅读下面的短文,完成76—80题。情绪异常是一种非常复杂的现象,长期以来,各个领域的学者从自己的学科出发。对此现象纷纷做出各自的解释,但是始终未获解决。现在生物学家也开始涉足这个问题,并从生物学的角度加以探讨,他们的见解让人【】。
微程序是在()时被执行的。
若计算机采用CRC进行差错校验,生成多项式为G(X)=X4+X+1,信息字为10110,则CRC校验码是______。
开发微型嵌入式应用系统,采用(20)更合适。
Therewas______rainandsnowlastwinter.Sowehaveagoodharvestthissummer.
最新回复
(
0
)