首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
admin
2018-11-11
87
问题
设c
1
,c
2
,…,c
n
均为非零实常数,A=(a
ij
)
n×n
为正定矩阵,令b
ij
=a
ij
c
i
c
j
(i,j=1,2,…,n),矩阵B=(b
ij
)
n×n
,证明矩阵B为正定矩阵.
选项
答案
由b
ji
=b
ij
,知B对称.若χ
1
,χ
2
,…,χ
n
不全为0,则c
1
χ
1
,c
2
χ
2
,…,c
n
χ
n
不全为零,此时,(χ
1
,χ
2
,…,χ
n
)B(χ
1
,χ
2
,…,χ
n
)
T
=[*]accχχ=[*]a(cχ)(cχ)>0,故B正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RJj4777K
0
考研数学二
相关试题推荐
设A为n阶方阵(n≥2),A*是A的伴随矩阵,试证:当r(A)<n一1时,r(A*)=0.
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.证明4E一A可逆;
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξf(x)dx=(1一ξ)f(ξ)成立.
设曲线f(x)=xn(n为正整数)在点(1,1)处的切线与x轴相交于点(ξn,0),求
设二维随机变量(X,Y)的分布函数为F(x,y)=,则常数A和B的值依次为()
设f(x,y)为连续函数,且f(x,y)=xy+其中D是由y=0,y=x2,x=1所围成的区域,求f(x,y).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
求二重积分其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域.
(1998年)求函数f(χ)=在区间(0,2π)内的间断点,并判断其类型.
设∫xf(x)dx=arcsinx+C,则=_______
随机试题
动物见到食物就引起唾液分泌,这属于
易侵犯人体上部和肌腠的外邪是
A.咀嚼痛B.自发性隐痛,冷热刺激痛C.放射性锐痛D.阵发性电击样痛E.张口闭口痛下述疾病最可能表现出上述哪一种性质的疼痛急性根尖周炎
为了对各种不同类别的危险物质可能出现的事故严重度进行评价,根据()原则建立了物质子类别同事故形态之间的对应关系,每种事故形态用一种伤害模型来描述。
根据现行《建筑安装工程费用项目组成》(建标[2013]44号),教育费附加应计入建筑安装工程的()。
下面哪一种风险不是系统风险()。
我国最基层的群众性自治组织是()。
从A地到B地的道路如图所示,所有转弯均为直角,问如果要以最短距离从A地到达B地,有多少种不同的走法可以选择?()
现代科技中,()是通过受激发射而实现光波放大。
在我国,_________是专门的法律监督机关。
最新回复
(
0
)