首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=________.
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=________.
admin
2017-04-30
80
问题
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)e
y
+f(y)e
x
,且f’(0)存在等于a,a≠0,则f(x)=________.
选项
答案
axe
x
解析
由f’(0)存在,设法去证对一切x,f’(x)存在,并求出f(x).
将y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得
f(x)=f(x)+f(0)e
x
,
所以f(0)=0.
令△x→0,得
f’(x)=f(x)+e
x
f’(0)=f(x)+ae
x
,
所以f’(x)存在.解此一阶微分方程,得
f(x)=e
x
[∫ae
x
.e
-x
dx+C]=e
x
(sx+C).
因f(0)=0,所以C=0,从而得f(x)=axe
x
,如上所填.
转载请注明原文地址:https://www.kaotiyun.com/show/I5t4777K
0
考研数学二
相关试题推荐
∫sec3xdx=________.
证明:当x>1时,ln(1+x)/lnx>x/(1+x).
求方程x(lnx-lny)dy-ydx=0的通解。
设f(x)=sinx-∫0x(x-t)f(t)dt,其中f为连续函数,求f(x).
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积.
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
设矩阵是矩阵A*的一个特征向量,A是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a,b和λ的值.
随机试题
Globalwarmingmayormaynotbethegreatenvironmentalcrisisofthe21stcentury,but—regardlessofwhetheritisorisn’t—w
在精液常规检查中,下列不正常的指标是
甲打算卖房,问乙是否愿买,乙一向迷信,就跟甲说:“如果明天早上7点你家屋顶上来了喜鹊,我就出10万块钱买你的房子。”甲同意。乙回家后非常后悔。第二天早上7点差几分时,恰有一群喜鹊停在甲家的屋顶上,乙正要将喜鹊赶走,甲不知情的儿子拿起弹弓把喜鹊打跑了,至7点
市值配售中,如果投资者在中签后,认购资金不足或者没有及时缴纳款项,可由证券营业部代为认购。( )
下列不负刑事责任的是()。
下列职位中,我国《宪法》没有规定连任不得超过两届的是()。
简述明治维新教育改革内容。
RIP协议用于在网络设备之间交换…信息。
Whatcanwelearnaboutthecouple?
Whotobelieve?NokiaorEricsson?IBMorSunMicrosystems?MicrosoftorSiebel?Rarelyhavethefortunesoftechnologycompanie
最新回复
(
0
)