首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=一(一2,一6,10,p)T. (1)p为何值时,该向量组线性无关?将此时的向量α=(4,1,6,10)T用α1,α2,α3,α4线性表示.
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=一(一2,一6,10,p)T. (1)p为何值时,该向量组线性无关?将此时的向量α=(4,1,6,10)T用α1,α2,α3,α4线性表示.
admin
2020-09-25
90
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(-1,一3,5,1)
T
,α
3
=(3,2,一1,p+2)
T
,α
4
=一(一2,一6,10,p)
T
.
(1)p为何值时,该向量组线性无关?将此时的向量α=(4,1,6,10)
T
用α
1
,α
2
,α
3
,α
4
线性表示.
(2)p为何值时,该向量组线性相关?求出它此时的秩和一个最大无关组.
选项
答案
以α
1
,α
2
,α
3
,α
4
,α为列向量组成矩阵,对其施以初等行变换得 [*] (1)p≠2时,向量组α
1
,α
2
,α
3
,α
4
线性无关.设α=x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
,从而有线性方程组 [*] 解得x
1
=2,[*]x
3
=1,[*] (2)当p=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关,并且秩为3,α
1
,α
2
,α
3
是一个最大无关组.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HJx4777K
0
考研数学三
相关试题推荐
曲线y=lnx上与直线x+y=1垂直的切线方程为__________.
已知,A*是A的伴随矩阵,那么A*的特征值是________。
设α=(1,-1,a)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值λ=3的特征向量是_________
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量中α1-α2,α1—2α2+α3,(α1-α3),α1+3α2—4α3是导出组Ax=0的解向量的个数为()
随机试题
多不饱和脂肪酸是指含有两个以上不饱和键的脂肪酸。()
胃脘胁肋胀满疼痛,呃逆嗳气,吞酸嘈杂,苔薄黄属于
A、嵌顿性股疝B、肠蛔虫团堵塞C、急性乙状结肠扭转D、急性肠套叠E、肠系膜上动脉栓塞常以单纯机械性不完全性肠梗阻为表现的是
妊高征使用硫酸镁解痉时,应停用药物的情况是
人身权
水工建筑物一般按它的()等来进行分类。
下列各种工作的错误,应当用红字更正法予以更正的是()。
“乒乓外交”推动了20世纪70年代中美两国关系的恢复,打开了中美关系的大门。这场“小球转动大球”的外交,体现了体育的()。
你可能会遇上一位深藏不露的智者,其不经意间的一句话让你_____________;也可能会碰上一位令你心动的小伙或姑娘,铁轨的轰鸣声也无法干预你_____________注视的目光;或者走遍_____________,你才恰好在火车上得了一剂妙手回春的药方
【B1】【B6】
最新回复
(
0
)