首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,…,αr线性无关( ).
α1,α2,…,αr线性无关( ).
admin
2018-11-20
62
问题
α
1
,α
2
,…,α
r
线性无关
( ).
选项
A、存在全为零的实数k
1
,k
2
,…,k
r
,使得k
1
α
1
+k
2
α
1
+…+k
r
α
r
=0.
B、存在不全为零的实数k
1
,k
2
,…,k
r
,使得k
1
α
1
+k
2
α
1
+…+k
r
α
r
≠0.
C、每个α
i
都不能用其他向量线性表示.
D、有线性无关的部分组.
答案
C
解析
(A)不对,当k
1
=k
2
=…=k
r
=0时,对任何向量组α
1
,α
2
,…,α
r
,k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0都成立.
(B)不对,α
1
,α
2
,…,α
r
,线性相关时,也存在不全为零的实数k
1
,k
2
,…,k
r
,使得k
1
α
1
+k
2
α
2
+…+k
r
α
r
≠0;
(C)就是线性无关的意义.
(D)不对,线性相关的向量组也可能有线性无关的部分组.
转载请注明原文地址:https://www.kaotiyun.com/show/GuW4777K
0
考研数学三
相关试题推荐
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
设随机变量X在区间[一1,3]上服从均匀分布,则|X|的概率密度是________.
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式f’(x)+f(x)一∫0xf(t)dt=0.(1)求导数f’(x);(2)证明:当x≥0时,成立不等式e一x≤f(x)≤1.
已知产品某项指标X的概率密度为f(x)=e一|x一μ|,一∞<x<+∞,其中μ为未知参数.现从该产品中随机抽取3个,测得其该项指标值为1028,968,1007.(1)试用矩估计法求μ的估计;(2)试用最大似然估计法求μ的估计.
设二维随机变量(X,Y)的分布函数为Ф(2x+1)Ф(2y—1),其中Ф(x)为标准正态分布函数,则(X,Y)~N________。
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。(Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表示;(Ⅱ)求ATβ。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
计算n阶行列式,其中α≠β。
假设随机变量X1,X2,X3,X4相互独立且都服从0—1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
随机试题
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
一般中型工厂的电源进线电压是()。
用线段的升降表达事物的动态(差值)变化的统计图为
某厂房基础工程投标文件的已标价工程量清单中某子目各项内容如下:A:22913.2;B:挖独立基础土方;C:010101003001;D:m3;E:572.83;F:三类土,独立基础垫层底面积3.6m×3.6m,深3.4m,弃土运距200m;G:40。问题:
下列各项中,通过“其他货币资金”账户核算的是()。
下图是我国某校研究性学习小组的同学在考察某地后所绘制的土地利用图,回答下列问题。由图中信息可知,该地的气候类型可能是______。
一篇优秀的文献综述其实就是一幅学术谱系图。写文献综述不仅是为了陈述以往的相关研究,也不仅仅是为了表示对前辈、同行或知识产权的尊重,更是为了“认祖归宗”,对自己的研究进行定位。有时候只有把一篇文献放到学术史的脉络、学术传统中去,我们才能真正理解这
ThecoreofGreece’stroublesistoomuchspending,toolittletax-collectingandbook-cooking.SpainandIrelandareintroubl
Theearningsofwomenarewellbelowthatofmen______educationaldifferencesthatarediminishingbetweenthetwosexes.
Thespeakersarebothpleasedtobehomeaftertheirjourney.
最新回复
(
0
)