首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关;
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关;
admin
2018-08-03
78
问题
设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
证明α
1
,α
2
,α
3
线性无关;
选项
答案
设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=一α
1
,α
2
=α
2
, 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①一②,得 2k
1
α
1
一k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知走k
1
=k
3
=0,代入①式 得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Grg4777K
0
考研数学一
相关试题推荐
设点M1(1,一1,一2),M2(1,0,3),M3(2,1,2),则点M3到向量的距离为___________.
当x>0时,证明:
设f(x)在[a,b]上连续,且f"(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xn与Y1,Y2,…,Yn分别为来自两个总体的简单样本,S12=服从___________分布.
设A为n阶矩阵,k为常数,则(kA)*等于().
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
设函数f(x,y)可微,,求f(x,y).
设A=,方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}.
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
随机试题
国际营销最突出的特征就是实行()
须予以隔离治疗的患者是必须根据病情,采取必要的治疗和控制传播措施的是
来源于芸香科的药材是
A、发汗B、阴干C、置沸水中略烫D、蒸透心,敞开低温干燥E、置沸水中煮至透心太子参的加工方法为
中央银行在证券市场上买卖有价证券是在开展它的()业务。
Specializationcanbeseenasaresponsetotheproblemofanincreasingaccumulationofscientificknowledge.Bysplittingupt
译前编辑
InwhichsituationIndianswouldn’tusesignlanguageaccordingtothepassage?
Wecanexpect______temperaturesandcalmconditionsinthecentralandsouthernregionsforatleastthenextthreedays.
Undertheprincipleof______,theFederalGovernmentisdividedintoThreebranches,thelegislative,theexecutiveandthejudi
最新回复
(
0
)