首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
admin
2018-05-25
87
问题
设λ
1
,λ
2
,λ
3
是三阶矩阵A的三个不同特征值,α
1
,α
2
,α
3
分别是属于特征值λ
1
,λ
2
,λ
3
的特征向量,若α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关,则λ
1
,λ
2
,λ
3
满足______.
选项
答案
λ
1
λ
2
≠0
解析
令x
1
α
1
+x
2
A(α
1
+α
2
)+x
3
A
2
(α
1
+α
2
+α
3
)=0,即
(x
1
+λ
1
x
2
+λ
1
2
x
3
)α
1
+(λ
2
x
2
+λ
2
2
x
3
)α
2
+λ
3
2
x
3
α
3
=0,则有
x
1
+λ
1
x
2
+λ
1
2
x
3
=0,λ
2
x
2
+λ
2
2
x
3
=0,λ
3
2
x
3
=0,因为x
1
,x
2
,x
3
只能全为零,所以
转载请注明原文地址:https://www.kaotiyun.com/show/GEW4777K
0
考研数学三
相关试题推荐
设f(x)=试确定常数a,b,c,使f(x)在x=0点处连续且可导.
设In=(n>1).证明:(1)In+In-2=,并由此计算In;(2)
设γ1,γ2,…,γt和η1,η2…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
求齐次线性方程组基础解系.
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0,则
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1-α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
随机试题
自我效能感
患者,男,65岁。高血压30年,近10天来出现心慌、气短,咳粉红色泡沫痰,双肺满布湿啰音,坐位时呼吸困难减轻,现住院。如患者突然出现口斜眼歪,偏瘫及意识障碍,应考虑是
A.白头翁B.大青叶C.穿心莲D.射干E.鱼腥草
某砌体建筑物的地基基础设计等级为丙级,采用墙下钢筋混凝土条形基础,基础尺寸如图5.9.4所示,基础顶面处相应于作用的标准值为:永久荷载轴压力FGk=300kN/m,可变荷载轴压力FQk=136kN/m,可变荷载的组合值系数为0.7,基底以上基础与土的平均重
选择与开发区规划性质、发展目标相近的国内外已建开发区作类比分析,采用计算()的方法,类比污染物排放总量数据。
旅行社分社()。
"Daydreamingagain,barb?You’llnever【21】______anythingifyouspendyoutimethatway!Can’tyoufindsomethingusefultod
【B1】【B7】
Thiscountryisfullycommittedtotheintroductionofcomputersintoschools.Thisisdemonstratedbythefactthatvirtuallya
Howmanycountriesandorganizationswilltakepartinthe2019ChinaBeijingInternationalHorticulturalExhibition?
最新回复
(
0
)