首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是 ( )
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是 ( )
admin
2016-09-19
66
问题
已知向量组(Ⅰ)α
1
,α
2
,α
3
,α
4
线性无关,则与(Ⅰ)等价的向量组是 ( )
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
B、α
1
-α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
C、α
1
+α
2
,α
2
-α
3
,α
3
+α
4
,α
4
-α
1
D、α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
答案
D
解析
因(A)α
1
+α
2
-(α
2
+α
3
)+(α
3
+α
4
)-(α
4
+α
1
)=0;
(B)(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
4
)+(α
4
-α
1
)=0;
(C)(α
1
+α
2
)-(α
2
-α
3
)-(α
3
+α
4
)+(α
4
-α
1
)=0,
故均线性相关,而
[α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
]=[α
1
,α
2
,α
3
,α
4
]
=[α
1
,α
2
,α
3
,α
4
]C,
其中
故α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
线性无关,两向量组等价.
转载请注明原文地址:https://www.kaotiyun.com/show/RtT4777K
0
考研数学三
相关试题推荐
[*]
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
求下列齐次型方程的通解:(1)xyˊ=y(1ny-lnx);;(3)xyˊ=xey/x+y;(4)(x+y)yˊ=x-y;(5)(x2+y2)dx-xydy=0;(6)(x+ycosy/x)dx-xcosy/xdy=0.
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
A是n阶矩阵,且A3=0,则().
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_______.
随机试题
能作为国际经济法主体的自然人,必须是()
已知某企业2012年只生产一种产品,有关的业务量、售价与成本资料如下:期初存货量(件)0变动生产成本(元)60000本期生产量(件)6000固定制造费用(元)15000本期销售
下列有关票据上的签章的表述,正确的是:()
设计施工总承包合同通用条款规定,除专用条款另有约定外,工程进度付款()。
( )是指在确认、记录和计算的基础上,以财务报表的形式向财务报表使用者提供会计信息。
以未来价格上升带来的价差收益为投资目标的证券组合属于()
个人取得的下列收入中,应按“偶然所得”缴纳个人所得税的有()。
TheDragonBoatFestivalisoneofthet______(传统的)festivalsinChina.Peopleusuallyeatricedumplingsonthatday.
赵、钱、孙3人共同完成一项工程,赵、钱合作8天完成工程的40%,钱、孙合作2天完成工程的20%,然后3人合作3天完成剩余工程,3人工作效率由高到低的排序是()。
A、 B、 C、 D、 E、 C
最新回复
(
0
)