首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组 有通解k1ξ1+k2ξ2= k1(1,2,1,-1)T+ k2(0,-1,-3,2)T. 方程组 有通解λ1η1+λ2η2=λ1(2,-1,-6, 1)T+λ2(-1,2,4,a+8)T. 已知方程组 有非零解,试确定参数α的值,并求该非零
设方程组 有通解k1ξ1+k2ξ2= k1(1,2,1,-1)T+ k2(0,-1,-3,2)T. 方程组 有通解λ1η1+λ2η2=λ1(2,-1,-6, 1)T+λ2(-1,2,4,a+8)T. 已知方程组 有非零解,试确定参数α的值,并求该非零
admin
2018-07-23
77
问题
设方程组
有通解k
1
ξ
1
+k
2
ξ
2
= k
1
(1,2,1,-1)
T
+ k
2
(0,-1,-3,2)
T
.
方程组
有通解λ
1
η
1
+λ
2
η
2
=λ
1
(2,-1,-6, 1)
T
+λ
2
(-1,2,4,a+8)
T
.
已知方程组
有非零解,试确定参数α的值,并求该非零解.[img][/img]
选项
答案
方程组(***)有非零解,即方程组(*),方程组(**)有非零公共解,设为β,则β属于方程组(*)的通解,也属于方程组(**)的通解,即 β=k
1
ξ
1
+ k
2
ξ
2
=λ
1
η
1
+λ
2
η
2
,其中k
1
,k
2
不全为零,且λ
1
,λ
2
不全为零. 得k
1
ξ
1
+ k
2
ξ
2
-λ
1
η
1
-λ
2
η
2
, (*ˊ) (*ˊ)式有非零解〈=〉r(ξ
1
,ξ
2
,-η
1
,-η
2
)<4. 对(ξ
1
,ξ
2
,-η
1
,-η
2
)作初等行变换, [*] 故当a=-8时,方程组(***)有非零解. 当a=-8时,方程组(*ˊ)的系数矩阵经初等行变换化为 [*] 方程组(*ˊ)的非零公共解为 [*] 其中k是任意非零常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Fzj4777K
0
考研数学二
相关试题推荐
1/2
A、 B、 C、 D、 B
设区域D是由y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-1),(X,Y)服从区域D上的均匀分布.(1)求(X,Y)的密度函数;(2)求X,Y的边缘密度函数.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
(2011年试题,三)设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)外切线的倾角,若的表达式.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.
求微分方程xy’+y=xex满足y(1)=1的特解.
已知A=,求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
设f(x)在x=a处可导,则|f(x)|在x=a处不可导的充分必要条件是()
设微分方程作自变量变换t=lnx以及因变量变换,请将原微分方程变换为z关于t的微分方程;
随机试题
内径54.64mm,壁厚9.19mm,外径(),API型钻杆(D55类)的抗扭屈服极限是18716N.m。
肺炎球菌在肺泡内繁殖,通过哪一途径扩散而致肺段或肺叶实变
蛔虫病的辨证纲领是
在精神分析中,治疗师会潜意识恋慕或憎恨患者.称为
某采石厂开采地点距国道大桥16.7m,1987年采矿由村办企业转为乡镇企业,王某某承包经营该厂,破碎车间由李某某承包并作为负责人兼安全员。1989年7月,由于该采石厂在出事故地点的开采处已经形成明显伞檐,王某某发现李某某在原开采点和出事地点两处之间进行
一般资料:张某,女,28岁,在职教师(工作半年),单身,身高1.66米,五官端正。家中有一小2岁的妹妹,父亲为一大专院校教师,母亲为幼儿园教师,父母关系长期不和。从小喜爱读书,成绩优秀,高中毕业考人某重点大学,本科毕业后考研两次,硕士研究生毕业后去外地某中
关于新时代西部大开发的新格局,下列做法错误的是()。
张某死后,遗产包括1张100元的存折,l台电视机和一些旧家具。张甲、张乙、张丙是张某的三个儿子。因无遗嘱,故三人经协商后,张甲继承了存折,张乙继承了电视,张丙继承了旧家具,一段时间后,王某向张乙出示了自己将电视借给张某的借条,张乙将电视还给王某。据此,下列
求空间曲线积分J=∫Ly2dx+xydy+xzdz,其中L是圆柱面x2+y2=2y与平面y=z一1的交线,从x轴正向看去取逆时针方向.
Therelationshipbetweenformaleducationandeconomicgrowthinpoorcountriesiswidelymisunderstoodbyeconomistsandpoliti
最新回复
(
0
)