首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)求方程组AX=0的一个基础解系. (2)a,b,c为什么数时AX=B有解? (3)此时求满足AX=B的通解.
设 (1)求方程组AX=0的一个基础解系. (2)a,b,c为什么数时AX=B有解? (3)此时求满足AX=B的通解.
admin
2017-10-21
63
问题
设
(1)求方程组AX=0的一个基础解系.
(2)a,b,c为什么数时AX=B有解?
(3)此时求满足AX=B的通解.
选项
答案
对AX=B的增广矩阵(A|B)作初等行变换化为阶梯形矩阵: [*] 得到AX=0的同解方程组: [*] 求得基础解系:(一2,1,1,0)
T
,(1,0,0,1)
T
. (2)AX=B有解[*]r(A|B)=r(A)=2,得a=6,b=一3,c=3. (3)建立3个线性方程组,它们的系数矩阵都是A,常数列依次为B的各列.则X的各列依次是它们的解.它们的导出组都是AX=0,已经有了基础解系(一2,1,1,0)
T
,(1,0,0,1)
T
,只用再各求一个特解就可得到通解.可以一起用矩阵消元法求它们的特解: [*] 于是(3/2,3/2,0,0)
T
,(一3/2,3/2,0,0)
T
,(0,1,0,0)
T
依次是这3个方程组的特解.AX=B的通解为: [*]其中c
1
,c
2
,c
3
,c
4
,c
5
,c
6
任意. 或者表示为: [*]其中H为任意2×3矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FdH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn,α1线性无关.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
求由曲线y=4一x2与x轴围成的部分绕直线x=3旋转一周所成的几何体的体积.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
设C1,C2是任意两条过原点的曲线,曲线C介于C1和C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
随机试题
社会主义社会的根本任务是( )
心原性呼吸困难的主要发生机理是:
审慎原则并不是不尊重科学,而是对科学应用的务实态度。科研成果的取得及其社会认可,往往代表着巨大的经验利益甚或科学家的终身成就,这就很难保证科学家不会放松科学原则要求而违规;科研成果的社会化往往与企业利益相连,企业逐利时难免会刻意隐瞒危害;由于科研的未知性因
根据《立法法》的规定,下列选项关于立法公布与备案的说法中不正确的有哪些?()
在项目实施阶段,工程管理的核心是()。
一个人换了衣服和发型,但是我们仍然能够认出他,这体现了()。
Inmylivingroom,thereisaplaque(IS)thatadvisesmeto"bloom【K1】_____youareplanted".ItremindsmeofDorothy.Igot
1938年,德国科学家在用慢中子轰击铀核时,首次发现了原子核的裂变并放出新的中子的现象。以下对这位德国科学家的名字说法错误的是()。
绝对剩余价值生产和相对剩余价值生产的共同点是()
Youcangoout,______youpromisetocomebackbefore11o’clock.
最新回复
(
0
)