首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)求方程组AX=0的一个基础解系. (2)a,b,c为什么数时AX=B有解? (3)此时求满足AX=B的通解.
设 (1)求方程组AX=0的一个基础解系. (2)a,b,c为什么数时AX=B有解? (3)此时求满足AX=B的通解.
admin
2017-10-21
48
问题
设
(1)求方程组AX=0的一个基础解系.
(2)a,b,c为什么数时AX=B有解?
(3)此时求满足AX=B的通解.
选项
答案
对AX=B的增广矩阵(A|B)作初等行变换化为阶梯形矩阵: [*] 得到AX=0的同解方程组: [*] 求得基础解系:(一2,1,1,0)
T
,(1,0,0,1)
T
. (2)AX=B有解[*]r(A|B)=r(A)=2,得a=6,b=一3,c=3. (3)建立3个线性方程组,它们的系数矩阵都是A,常数列依次为B的各列.则X的各列依次是它们的解.它们的导出组都是AX=0,已经有了基础解系(一2,1,1,0)
T
,(1,0,0,1)
T
,只用再各求一个特解就可得到通解.可以一起用矩阵消元法求它们的特解: [*] 于是(3/2,3/2,0,0)
T
,(一3/2,3/2,0,0)
T
,(0,1,0,0)
T
依次是这3个方程组的特解.AX=B的通解为: [*]其中c
1
,c
2
,c
3
,c
4
,c
5
,c
6
任意. 或者表示为: [*]其中H为任意2×3矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FdH4777K
0
考研数学三
相关试题推荐
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
设A=(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a3a≠0,a2=a4=一a,求ATX=b的通解.
就a,b的不同取值,讨论方程组解的情况.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
参数a取何值时,线性方程组有无穷多个解?求其通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设方程组无解,则a=__________.
随机试题
劳务派遣单位是劳动法所称(),应当履行对劳动者的义务。
正常组织显影,而病变组织不显影的显像是
腹部仰卧前后位摄影的叙述错误的是
患者,男性,55岁。高血压病史4年,有脑梗死病史,多次测血压170~190/90~110mmHg。该患者诊断为
女性,35岁。房屋倒塌,胸部以上被压伤30min,呼吸困难,无腹痛、呕吐。体检:血压140/110mmHg(18.67/14.67kPa),脉搏110/min,呼吸34/min。神志清楚,两眼结膜有出血,颈静脉怒张,前胸及肩部有散在的出血点,尿常规阴性。最
在委托代理中,委托书授权不明确的,被代理人应当向第三人承担民事责任,代理人()。
下列关于审判制度基本原则的哪些理解是正确的?
体育教学的出发点和归宿是()。
“改革开放实践的不断深入发展,引起了我国人民思想上的巨大解放和观念上的不断更新,封闭、保守、狭隘的小生产观念正在被打破,逐渐被开放、进取、开拓、创新等观念所代替。”这一事实说明:
Holidaysandthestartofanewyear【B1】______makeusthinkabouthowwecan【B2】______ourselves,andhavethelifewewanti
最新回复
(
0
)