首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知 问a,b取何值时,向量组α1,α2,α3与β1,β2等价?
已知 问a,b取何值时,向量组α1,α2,α3与β1,β2等价?
admin
2017-06-14
87
问题
已知
问a,b取何值时,向量组α
1
,α
2
,α
3
与β
1
,β
2
等价?
选项
答案
因为A=(α
1
,α
2
,α
3
,β
1
,β
2
)= [*] 所以当a≠12,b≠4时,r(α
1
,α
2
,α
3
,β
1
,β
2
)=4,r(α
1
,α
2
,α
3
)=3≠4,故β
1
,β
2
不能由 α
1
,α
2
,α
3
线性表示,而r(β
1
,β
2
)=2≠4,故α
1
,α
2
,α
3
也不能由β
1
,β
2
线性表示; 当a=12,b≠4时,r(α
1
,α
2
,α
3
,β
1
,β
2
)=3,r(α
1
,α
2
,α
3
)=2≠3,故β
1
,β
2
不能由 α
1
,α
2
,α
3
线性表示,而r(β
1
,β
2
)=2≠3,故α
1
,α
2
,α
3
也不能由β
1
,β
2
线性表示; 当a≠12,b=4时,r(α
1
,α
2
,α
3
,β
1
,β
2
)=3,r(α
1
,α
2
,α
3
)=3,故β
1
,β
2
可由α
1
,α
2
,α
3
线性表示,且表示式唯一,而r(β
1
,β
2
)=2≠3,故α
1
,α
2
,α
3
也不能由β
1
,β
2
线性表示; 当a=12,b=4时,r(α
1
,α
2
,α
3
,β
1
,β
2
)=2,r(α
1
,α
2
,α
3
)=2,故β
1
,β
2
可由α
1
,α
2
,α
3
线性表示,且表示式不唯一,而r(β
1
,β
2
)=2,故α
1
,α
2
,α
3
也可由β
1
,β
2
线性表示,且表示唯一. 综上所述,当a=12,b=4时,向量组α
1
,α
2
,α
3
与β
1
,β
2
等价.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FZu4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
随机试题
经前期综合征的特点不包括
《巴黎公约》所确立的工业产权国际保护的优先权原则的含义和目的是什么?依照我国现行立法的规定,适用优先权原则应该具备哪些条件?
亨利希·曼的揭露批判帝国主义的“帝国三部曲”是
合成尿素首步反应的产物是()
金匮肾气丸主治病证中不包括
施工企业以自有的房产作抵押,向银行借款100万元,后来施工企业无力还贷,经诉讼后其抵押房产被拍卖,拍得的价款为150万元,贷款的利息及违约金为20万元,实现抵押权的费用为10万元,则拍卖后应返还施工企业的款项为()万元。
试述“三个代表”的内在联系。
证据必须是客观真实性的,既不能捕风捉影,更不能主观臆断。这说明证据的()
在PowerPoint中单击快捷功能按钮(61)可以新建一个演示文稿。
已知大写字母A的ASCII码值是65,小写字母a的ASCII码值是97。下列不能将变量e中的大写字母转换为对应小写字母的语句是()。
最新回复
(
0
)