首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
admin
2019-07-12
63
问题
设向量组α
1
,α
2
,…,α
m
线性无关,β
1
可由α
1
,α
2
,…,α
m
线性表示,但β
2
不可由α
1
,α
2
,…,α
m
线性表示,则( ).
选项
A、α
1
,α
2
,…,α
m-1
,β
1
线性相关
B、α
1
,α
2
,…,α
m-1
,β
1
,β
2
线性相关
C、α
1
,α
2
,…,α
m
,β
1
+β
2
线性相关
D、α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关
答案
D
解析
(A)不对,因为β
1
可由向量组α
1
,α
2
,…,α
m
线性表示,但不一定能被α
1
,α
2
,…,α
m-1
线性表示,所以α
1
,α
2
,…,α
m-1
,β
1
不一定线性相关;
(B)不对,因为α
1
,α
2
,…,α
m-1
,β
1
不一定线性相关,β
2
不一定可由α
1
,α
2
,…,α
m-1
,β
1
线性表示,所以α
1
,α
2
,…,α
m-1
,β
1
,β
2
不一定线性相关;
(C)不对,因为β
2
不可由α
1
,α
2
,…,α
m
线性表示,而β
1
可由α
1
,α
2
,…,α
m
线性表示,所以β
1
+β
2
不可由α
1
,α
2
,…,α
m
线性表示,于是α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关,选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/ExJ4777K
0
考研数学三
相关试题推荐
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值.(2)求函数f(x,y)=(x2+2x+y)ey的极值.-
设(X,Y)在区域D:0<x<1,|y|≤x内服从均匀分布.求随机变量X的边缘密度函数;
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设为正定矩阵,令证明:D—BA-1BT为正定矩阵.
设则A与B().
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
(2008年)微分方程xy’+y=0满足条件y(1)=1的解y=______。
(2004年)设A,B为两个随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρXY;(Ⅲ)Z=X2+Y2的概率分布。
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
随机试题
下列关于药物治疗作用的叙述,正确的是
可以从事除公司上市、企业清算以外房地产估价业务的房地产机构属于()。
在设备安装工程中,具备单机无负荷试车条件的,应当由( )组织试车。
由少数几家企业控制的市场结构是()。
简述《教师法》中规定的教师应承担的义务。(北京)
一块冰在沙里被融化到很小,它抱怨说:“要是在南极就好了,就不会被融化了。”沙听了后对它说:“沙漠里缺少冰,你在沙漠里是非常珍贵的,南极的冰很多。你到那里就失去了价值。”请结合自身谈谈这个故事对你的启示。
运用法治思维,就要_________权利平等、公平正义等法治理念以及由此决定的法律思维方式,去思考和评判一切涉法性社会争议问题。法律必须被信仰,否则将形同虚设。如果执政党的各级组织及其领导成员自己都不能深深地信仰并服从在党的领导下制定的宪法和法律,法治建设
ThestatisticsI’vecitedandthelivingexamplesarealltoofamiliartoyou.Butwhatmaynotbesofamiliarwillbetheincre
基于ARM内核的嵌入式芯片中包含互连通信组件,下面列出的()不属于互连通信组件?
Heisnotintheoffice.Hemusthavegonetohaveclasses,______?
最新回复
(
0
)