首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是: f(a,b)=0,f’x(a,b)=0, 且当r(a,b)>0
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是: f(a,b)=0,f’x(a,b)=0, 且当r(a,b)>0
admin
2018-04-18
78
问题
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’
y
(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:
f(a,b)=0,f’
x
(a,b)=0,
且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)<0时,b=φ(a)是极小值.其中
选项
答案
y=φ(x)在x=a处取得极值的必要条件是φ’(a)=0.按隐函数求导法,φ’(x)满足 f’
x
(x,φ(x))+f’
y
(x,φ(x))φ’(x)=0. (*) 因b=φ(a),则有 f(a,b)=0, φ’(a)=[*]=0, 于是f’
x
(a,b)=0. 将(*)式两边对x求导得 f"
xx
(x,φ(x))+f"
xy
(x,φ(x))φ’(x)+[*][f’
y
(x,φ(x))]φ’(x)+f’
y
(x,φ(x))φ"(x)=0, 上式中令x=a,φ(a)=b,φ’(a)=0,得 [*] 因此当[*]>0时,φ"(a)<0,故b=φ(a)是极大值; 当[*]<0时,φ"(a)>0,故b=φ(a)是极小值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Etk4777K
0
考研数学二
相关试题推荐
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设函数g(x)可微,h(x)=e1+g(x),hˊ(1)=1,gˊ(1)=2,则g(1)等于().
设A=(Aij)n×n是正交矩阵,将A以行分块为A=(α1,α2,…αn)T,则方程组AX=b,b=(b1,…,bn)T的通解为________.
求c(c>0)的值,使两曲线y=x2与y=cx3所围成的图形的面积为2/3.
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
设(X,Y)是二维离散型随机向量,其分布为P(X=xi,Y=yj}=pij(i=1,2,…,m;j=1,2,…,n),称(pij)m×n为联合概率矩阵.证明:X与Y相互独立的充要条件是(pij)m×n的秩为1.
(2001年试题,八)设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点.(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围成图形的面积最小.
(1999年试题,十)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明数列{an}的极限存在.
行列式
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
随机试题
当集成译码器74LS138的3个使能端都满足要求时,其输出端为()有效。
患者APTT、及PT同时延长,提示有缺陷的凝血因子是
A.口蹄疫B.布鲁氏菌病C.乙型脑炎D.细小病毒病E.衣原体病病牛体温41℃,口腔黏膜、乳房上的皮肤出现水疱、烂斑。病牛蹄壳脱落,跛行,死亡率低,犊牛可表现心肌炎,剖检可见虎斑心,该病可能是()。
甲展览馆委托雕塑家叶某创作了一座巨型雕塑,将其放置在公园入口,委托创作合同中未约定版权归属。下列行为中,哪一项不属于侵犯著作权的行为?
(2009)室外综合温度最高的外围护结构部位是()。
树木栽植后,养护期管理措施包括()。
转让定价方法中的成本加成法,其公平成交价格的计算公式为()。
形成企业核心竞争力的基础是()。
二级资质的房地产开发企业,须在近3年房屋建筑面积累计竣工()万m2以上。
计算机网络中传输介质传输速率的单位是bps,其含义是()。
最新回复
(
0
)