首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(z)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)
设f(z)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)
admin
2015-07-10
47
问题
设f(z)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
(1)存在c∈(a,b),使得f(c)=0;
(2)存在ξ
i
∈(a,b)(i=1,2),且ξ
1
≠ξ
2
,使得f’(ξ
i
)+f(ξ
i
)=0(i=1,2);
(3)存在ξ∈(a,b),使得f"(ξ)=f(ξ);
(4)存在η∈(a,b),使得f"(η)一3f’(η)+2f(η)=0.
选项
答案
(1)令F(x)=∫
a
x
f(x)dt,则F(x)在[a,b]上连续,在(a,b)内可导,且F’(x)=f(x).故存在c∈(a,6),使得 ∫
a
b
f(x)dx=F(b)一F(a)=F’(c)(b一a)=f(c)(b一a)=0,即f(c)=0. (2)令h(x)=e
x
f(x),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ
2
)=0, 而h’(x)=e
x
[f’(x)+f(x)]且e
x
≠0,所以f’(ξ
i
)+f(ξ
i
)=0(i=1,2). (3)令φ(x)=e
-x
[f’(x)+f(x)],φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=e
-x
[f"(x)一f(x)]且e
-x
≠0,所以f"(ξ)=f(ξ). (4)令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0, 而g’(x)=e
-x
[f’(x)一f(x)]且e≠0,所以f’(η
1
)一f(η
1
)=0,f’(η
2
)一f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)一f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
-2x
[f"(x)一3f’(x)+2f(x)]且e
-2x
≠0, 所以f"(η)一3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EjU4777K
0
考研数学三
相关试题推荐
关于“十四五”规划和2035年远景目标纲要提出的完善党和国家监督体系,下列说法错误的是()。
在庆祝中国共产党成立100周年大会上,习近平总书记围绕以史为鉴、开创未来,鲜明提出“九个必须”的根本要求。下列不属于“九个必须”根本要求的是()。
2022年中央一号文件指出,大力发展县域范围内比较优势明显、带动农业农村能力强、就业容量大的产业,推动形成“()”发展格局。
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
求下列函数在指定区间上的最大值、最小值:
设z=xf(y/x)+(x-1)ylnx,其中f是任意二阶可微函数,求证:
已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(x+y,f(x,y)).求
随机试题
试论述在客户关系管理实施中如何极大地重视人的因素
长期大量服用后,易出现胃肠道出血的药物是
患者,女性,50岁。反复上腹部疼痛、腹胀5年,无规律性,查体:消瘦,上腹压痛,有舌炎,贫血貌。胃镜检查示黏膜红白相间,以白为主,皱襞平坦,黏膜下血管透见,黏液湖缩小。黏膜活检呈重度不典型增生。最可能的诊断
谷胱甘肽是由哪三种氨基酸组成的三肽
当砂中含有较多()碎屑时,在硬化的混凝土中与水化铝酸钙反应成硫铝酸钙结晶,体积膨胀,产生破坏作用。
大型灌区续建配套和节水改造。更新改造()已有大型排涝泵站。
地下连续墙施工特点包括()。
ThefirsthotairballoonwasmadebytwoFrenchbrothers,JosephandEtiennedeMontgolfier.Bothbrothersworkedinthefamily
Alloftheplantsnowfarmedonalargescaleweredevelopedfromplants________wild.
In600B.C.,theAssyrianEmpirehadjustfallen.Atits【C1】______,ithadextendedfromEgypttoBabylonia,foranextremele
最新回复
(
0
)