首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,B是A经过若干次初等变换后所得到的矩阵,则有( ).
设A为n阶方阵,B是A经过若干次初等变换后所得到的矩阵,则有( ).
admin
2019-08-12
108
问题
设A为n阶方阵,B是A经过若干次初等变换后所得到的矩阵,则有( ).
选项
A、|A|=|B|
B、|A|≠|B|
C、若|A|=0,则一定有|B|=0
D、若|A|>0,则一定有|B|>0
答案
C
解析
因为初等变换不改变矩阵的秩,所以若|A|=0,即r(A)<n,则r(B)<n,即|B|=0,应选C.
转载请注明原文地址:https://www.kaotiyun.com/show/EdN4777K
0
考研数学二
相关试题推荐
求方程的通解.
微分方程的通解是____________.
由曲线y=lnx及直线x+y=e+1,y=0所围成的平面图形的面积可用二重积分表示为_________,其值等于__________.
要使都是线性方程组AX=0的解,只要系数矩阵A为()
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,是导出组Ax=0的解向量的个数为()
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的()
在极坐标变换下将f(χ,y)dσ化为累次积分,其中D为:χ2+y2≤2ax与χ2+y2≤2ay的公共部分(a>0).
设函数f(x)在(0,+∞)内可导,f(x)>0,且定义数列xn=,证明数列{xn}收敛.
随机试题
Decadesofscientificresearchshowthatstressandanxietyareprevalentproblemsatwork,contributingtodeficitsinemployee
大连顺昌物流有限公司是经大连海关报关注册登记的一家代理报关公司。该公司主要在大连机场海关办理报关业务。2006年公司报关业务扩大,拟在天津塘沽设立分支机构,则该公司应向()办理注册登记手续。
在美国,为商品交易顾问(CTA)提供进入各交易所进行期货交易途径的期货中介机构属于()。[2012年9月真题]
根据《税收征收管理法》的规定,纳税人未按规定期限缴纳税款的,税务机关除责令其限期缴纳外,从滞纳税款之日起,按日加收滞纳金,该滞纳金的比例是滞纳税款的()。
简述在教学中如何运用《义务教育历史课程标准(2011年版)》。
迁移是习得的经验得以概括化、系统化的有效途径,是能力与品德形成的关键环节。
公告和通告的共同特点是()。
一深一浅的两种阅读路径,并没有随着传播技术的提升、书籍载体的变迁而并轨。甚至,浅阅读更胜一筹了,阅读碎片化就是重要的表现形式之一。诚然,零珠散玉也有价值,但阅读求知若一味追求省事,大脑沟回会变浅的。其实,用什么阅读不是核心,真正的读书人是不在乎书的形式的,
Thetranslatormusthaveanexcellent,up-to-dateknowledgeofhissourcelanguages,fullfacilityinthehandlingofhistarget
ResultsshowedthatatleastatenthoftheHarvardfirst-yearundergraduatespolledadmittedtohavingcheatedonanexamprior
最新回复
(
0
)