首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组Aχ=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组Aχ=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
admin
2018-06-12
52
问题
设α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,其中α
1
,α
2
,…,α
s
是齐次方程组Aχ=0的基础解系.证明Aβ
1
,Aβ
2
,…,Aβ
t
线性无关.
选项
答案
设c
1
Aβ
1
+c
2
Aβ
2
+…+c
t
Aβ
t
=0,则A(c
1
β
1
+c
2
β
2
+…+c
t
β
t
)=0,即 c
1
β
1
+c
2
β
2
+…+c
t
β
t
是AX=0的解,从而可以用α
1
,α
2
,…,α
s
线性表示,即有 c
1
β
1
+c
2
β
2
+…+c
t
β
t
=k
1
α
1
+k
2
α
2
+…+k
s
α
s
, 由于α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,上式中的系数都为0,从而c
1
=c
2
=…=c
t
=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EUg4777K
0
考研数学一
相关试题推荐
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩降记为B.(1)证明B可逆;(2)求AB-1.
f(χ1,χ2,χ3)=5χ12+5χ22+cχ32-2χ1χ2+6χ1χ3-6χ2χ3的秩为2.(1)求参数c及此二次型对应矩阵的特征值;(2)指出方程f(χ1,χ2,χ3)=1表示何种二次曲面.
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
由a1=(1,1,0,0)T,a2=(1,0,1,1)T所生成的向量空间记作L1,由b1=(2,-1,3,3)T,b2=(0,1,-1,-1)T所生成的向量空间记作L2,试证L1=L2.
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
求不定积分
设在平面区域D上数量场u(x,y)=50-x2-4y2,试问在点P0(1,-2)∈D处沿什么方向时u(x,y)升高最快,并求一条路径,使从点P0(1,-2)处出发沿这条路径u(x,y)升高最快.
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x—t)dt,G(x)=∫01xg(xt)出,则当x→0时,F(x)是G(x)的().
证明不等式1+xln(x+
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{一1<X<4}≥a,则a的最大值为().
随机试题
A.血浆胰岛素水平测定B.血糖测定C.糖化血红蛋白A1测定D.糖化血浆白蛋白测定可反映糖尿病患者近8~12周内血糖总水平的检查是
检察官职业道德的基本原则包括下列哪些方面的内容?()
关于饰面板安装工程,说法正确的是()。
一般应设置封闭楼梯间的建筑物不包括()
创新的目的是()。
()fromthetopofthetower,thesouthfootofthemountainisaseaoftrees.
下列说法中,正确的是()。
Whenspeakingaboutsciencetoscientists,thereisonethingthatcanbesaidthatwillalmostalwaysraisetheirindignation,
Whatwillbeusedtopowercarsinthenextfewdecades?
【S1】【S4】
最新回复
(
0
)