首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*(χ)=χe-χ+e-2χ,y2*(χ)=χe-χ+χe-2χ,y3*(χ)=χe-χ+e-2χ+χe-2χ是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
已知y1*(χ)=χe-χ+e-2χ,y2*(χ)=χe-χ+χe-2χ,y3*(χ)=χe-χ+e-2χ+χe-2χ是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
admin
2016-07-20
87
问题
已知y
1
*
(χ)=χe
-χ
+e
-2χ
,y
2
*
(χ)=χe
-χ
+χe
-2χ
,y
3
*
(χ)=χe
-χ
+e
-2χ
+χe
-2χ
是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
选项
答案
y〞+4y′+4y=(χ+2)e
-χ
.
解析
(Ⅰ)由线性方程解的叠加原理
y
1
(χ),y
3
*
(χ)-y
2
*
(χ)=e
-2χ
,y
2
(χ)=y
3
*
(χ)-y
1
*
(χ)=χe
-2χ
均是相应的齐次方程的解,它们是线性无关的.于是该齐次方程的特征根是重特征根λ=-2,
相应的特征方程为
(λ+2)
2
=0,即λ
2
+4λ+4=0,
原方程为y〞+4y′+4y=f(χ). (*)
又由叠加原理知,y
*
(χ)=χe
-χ
叫是它的特解,求导得
y
*′
(χ)=e
-χ
(1-χ),y
*〞
(χ)=e
-χ
(χ-2).
代入方程(*)得
e
-χ
(χ-2)+4e
-χ
(1-χ)+4χe
-χ
=f(χ)
(χ)=(χ+2)e
-χ
所求方程为y〞+4y′+4y=(χ+2)e
-χ
转载请注明原文地址:https://www.kaotiyun.com/show/ZMw4777K
0
考研数学一
相关试题推荐
计算极限.
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量求A的特征值与特征向量;
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)求容器的容积V
设矩阵A=与对角矩阵A相似求方程组(-2E-A*)x=0的通解
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
利用变量替换u=x,v=y/x,可将方程化成新方程为().
设f(x)=x3一3x+k只有一个零点,则k的取值范围是().
设三阶常系数齐次线性微分方程有特解y1=eχ,y2=2χeχ,y3=3e-χ,则该微分方程为().
(2007年试题,24)设总体X的概率密度为X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
随机试题
A.痿软B.强硬C.吐弄D.短缩E.绊舌
关于癣的治疗哪项可以不用()
男,34岁。近1个月来多次因阵发性恐惧、胸闷、濒死感来医院急诊科就诊,症状持续约半小时后消失。多次查血常规、心电图及头颅CT等未见明显异常。患者为此担心苦恼,但仍能坚持工作。该患者的主要症状是
环境现状调查内容有()等。
大型成套设备的招标采购范围较为庞杂,在()中应明确说明,以便投标人进行合理报价。
某公司是一家贸易企业,在企业需要大力开拓市场的阶段,对销售人员宜采取()。
7,21,14,21,63,(),63
公安机关在办理刑事案件中,必须()。
根据以下资料。回答问题。2013年1~2月份工业企业利润比去年同期增加1039亿元,主要是以下六个行业拉动:一是电力行业,实现利润460亿元,比去年同期增长1.5倍,拉动规模以上企业利润增长4.6个百分点。二是石油加工行业,去年同期亏损101亿元,今年
Peoplewillfindthemselvessufferingfromheadacheandwateringeyes,andevensnowblindness,when______toseveralhoursof"sn
最新回复
(
0
)