首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: (Ⅰ)η*,ξ1,…,ξn-r线性无关; (Ⅱ)η*,η*+ξ1,…,η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: (Ⅰ)η*,ξ1,…,ξn-r线性无关; (Ⅱ)η*,η*+ξ1,…,η*+ξn-r线性无关。
admin
2020-03-05
16
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
(Ⅰ)η
*
,ξ
1
,…,ξ
n-r
线性无关;
(Ⅱ)η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
选项
答案
(Ⅰ)假设η
*
,ξ
1
,…,ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得 c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, (1) 用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
)=c
0
Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=c
0
b, 其中b≠0,则c=0,于是(1)式变为 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,与假设矛盾。 所以η
*
,ξ
1
,…,ξ
n-r
线性无关。 (Ⅱ)假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 即 (c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,则c
0
=0。与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EMS4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中,正确的
两条平行直线之间的距离为()
设=___________。
微分方程(y2+x)dx一2xydy=0的通解为____________.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为___________。
设曲线L的长度为l,且=M.证明:|∫LPdx+Qdy|≤Ml.
计算下列定积分:
求极限
设A为n阶方阵,且A的行列式|A|=a≠0,A*是A的伴随矩阵,则|A*|等于()
设f(x)连续,且∫0xtf(2x-t)dt=arctanx2,f(1)=1,求∫12f(x)dx.
随机试题
A、原发性腹膜炎B、继发性腹膜炎C、两者均有D、两者均无肝硬变腹水引起_______。
口唇检查时颜色发绀见于
胃容受性舒张是通过下列哪一途径实现的
左上腔静脉畸形,左上腔静脉流入心腔的最常见部位是
患者烦渴多饮,口干舌燥,尿频量多,舌边尖红苔薄黄,脉洪数。其治法是
早产儿心率较快平均为
发生交通事故出现伤亡时,导游人员应立即组织现场人员迅速抢救受伤的游客,特别是抢救重要游客。()
著名的《德意志安魂曲》是()的作品。
若有以下程序,则程序的输出结果是#defineS(x)x*x#defineT(x)S(x)*S(x)main(){intk=5,j=2;printf("%d,%d\n",S(k+j),T(k+j));}
Howdidthespeakerfeelwhenheranhisfirstmile?Hefeltitwasthe______thinghehadeverdone.
最新回复
(
0
)