首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
admin
2016-10-26
46
问题
设A=(a
ij
)是m×n矩阵,β=(b
1
,b
2
,…,b
n
)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,证明β可用A的行向量α
1
,α
2
,…,α
m
线性表出.
选项
答案
构造一个联立方程组 [*] 简记为Cx=0,显然,(Ⅲ)的解必是(Ⅰ)的解,又因(Ⅰ)的解全是(Ⅱ)的解,于是(Ⅰ)的解也必全是(Ⅲ)的解,所以(Ⅰ),(Ⅲ)是同解方程组,它们有相同的解空间.从而n一r(A)=n一r(C),即r(A)=r(C),亦即r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β). 因此极大线性无关组所含向量个数相等,这样α
1
,α
2
,…,α
m
的极大线性无关组也必是α
1
,…,α
m
,β的极大线性无关组,从而β可由α
1
,α
2
,…,α
m
线性表出.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EFu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
[*]
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
求下列不定积分:
设周期函数f(x,y)在(-∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5f(5))处的切线的斜率为().
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立,解此关于a,k的方程组可得a=-1,k=1.
设y=y(x)是由函数方程㏑(x+2y)=x2-y2所确定的隐函数.(1)求曲线y=y(x)与直线y=-x的交点坐标(x0,yo);(2)求曲线y=y(x)在(1)中交点处的切线方程.
求不定积分csc3xdx.
曲面x2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为
设f(x)在[0,1]连续且非负但不恒等于零,记I1=,I2=,I3=,则它们的大小关系为
随机试题
人民法院在接到起诉状时对符合本法规定的起诉条件的,应当()
胸、腰椎骨折合并截瘫者最好的处理是
男性患者,53岁,湖北人,ALT升高10年,腹水3个月,消化道出血1天,查体,脾大达盆腔,血WBC3.2×109/L,Hb7.8g/L,BPC6×1012/L,HBsAg(一),抗-HCV(一),B超示肝脏呈网状改变。偶饮酒。最可能的诊断是
A.每日B.每周C.每月D.每半年E.每年我国标准规定加速器电子辐射的深度剂量曲线图的检定周期为
临床用作血吸虫病防治药临床用作抗疟药
我国资产负债表通常采用()格式。
根据信用证资料回答问题及制单。FormofDoc.Credit*40A:IRREVOCABLEDoc.CreditNumber*20:BL—121805DateofIssue31C:120325Expiry
教师职后教育有_______、_______和_______。
关于正当防卫,下列表述中,正确的是()。
ROM中的信息是()。
最新回复
(
0
)