首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
admin
2018-11-20
70
问题
①设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
都是n维向量组,证明r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
③设A和B是两个列数相同的矩阵,
表示A在上,B在下构造的矩阵.证明
≤r(A)+r(B).
选项
答案
这是3个互相等价的命题:①是②的向量形式;③是②的转置形式.因此对其中之一的证明就完成了这3个命题的证明. 证明①.取{α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
}的一个最大无关组(I),记(I)
1
是(I)中属于α
1
,α
2
,…,α
s
中的那些向量所构成的部分组,(I)
2
是(I)中其余向量所构成的部分组.于是(I),和(I)
2
分别是属于α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
的无关部分组,因此它们包含向量个数分别不超过r(α
1
,α
2
,…,α
s
)和r(β
1
,β
2
,…,β
t
).从而 r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)=(I)中向量个数 =(I)
1
中向量个数+(I)
2
中向量个数) ≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DuW4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()一1,f(1)=0.证明:存在η∈(,1),使得f(η)=η;
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且=M.证明:f’(x0)=M.
设A为n阶矩阵,k为常数,则(kA)*等于().
设二维随机变量(X,Y)的密度函数为(1)问X,Y是否独立?(2)分别求U=X2和V=Y2的密度函数fU(u)和fV(v),并指出(U,V)服从的分布;(3)求P(U2+V2≤1).
设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有().
设A为三阶实对称矩阵,且存在可逆矩阵又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)一1;(3)计算行列式|A*+E|.
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求A*β.
设随机变量X的概率密度为对X独立地重复观察4次,用Y表示观察值大于的次数,求Y2的数学期望。
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设矩阵A=行列式|A|=—1,又A*的属于特征值λ0的一个特征向量为α=(—1,—1,1)T,求a,b,c及λ0的值。
随机试题
闻一多曾提出新格律诗的“三美”主张,即新诗要有
下列属于建设单位管理费的是()。
对价
注册资产评估师违反资产评估行业有关法律、法规、规章和规范性文件,违反资产评估准则和执业规范,违反资产评估职业道德准则和执业纪律的,由行业协会视情节轻重给予( )等行业自律惩戒。
旅行社设立服务网点的区域范围,不受地域限制。()
保健医生指导班级保教人员做好班级各种物品的_________________,督促疑似或确诊病儿在家隔离治疗。
ThecelebrationoftheNewYearistheoldestoneofallholidays.Itwasfirst【1】in【2】Babylonabout4,000yearsago.NewYear’s
若采用后退N帧ARQ协议进行流量控制,帧编号字段为7位,则发送窗口最大长度为(17)。
下面关于计算机系统的叙述中,最完整的是
WhatwilltheweatherbelikeinmostofNorthChina?
最新回复
(
0
)