首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型 f(x1 ,x2 ,x3)=XTAX, 矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换; (2)求出此二次型; (3)若β=[4,一1,0]T ,求A*β.
已知三元二次型 f(x1 ,x2 ,x3)=XTAX, 矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换; (2)求出此二次型; (3)若β=[4,一1,0]T ,求A*β.
admin
2016-12-16
94
问题
已知三元二次型
f(x
1
,x
2
,x
3
)=X
T
AX,
矩阵A的对角元素之和为3,且AB+B=0,其中
(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;
(2)求出此二次型;
(3)若β=[4,一1,0]
T
,求A
*
β.
选项
答案
(1)令B=[α
1
,α
2
,α
3
],α
i
为B的列向量,显然α
1
,α
2
线性无关,α
3
=α
1
+α
2
,因而r(B)=2,由AB=一B得到 A[α
1
,α
2
,α
3
]=一[α
1
,α
2
,α
3
],即 Aα
1
=一α
1
,Aα
2
=一α
2
,Aα
3
=一α
3
. 因α
1
,α
2
线性无关,故属于特征值一1的有两个线性无关的特征向量,所以λ
1
=λ
2
=一1为二重特征值.又因A的主对角线上的元素之和为λ
1
+λ
2
+λ
3
=3,故另一特征值为λ
3
=5. 设属于λ
3
=5的特征向量为α=[x
1
,x
2
,x
3
]
T
,则 αα
1
T
=0,αα
2
T
=0. [*] 故 α=[1,1,1]
T
. 对α
1
,α
2
进行施密特正交化得到 [*] 再将β
1
,β
2
,β
3
单位化,得到 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵,且经正交变换X=QY后,二次型的标准形为 f=一y
1
2
一y
2
2
+5y
3
2
. [*] 故 f=X
T
AX=x
1
2
+x
2
2
+x
3
2
+4x
1
x
2
+4x
2
x
3
+4x
1
x
3
. (3)设 p=k
1
α
1
+k
2
α
2
+k
3
α
3
, 解得 k
1
=3,k
2
=一2,k
3
=1. 因此p=3α
1
一2α
2
+α,而 Aα
1
=一α
1
,Aα
2
=一α
2
,Aα=5a, 故 A
n
β=一A
n
(3α
1
一2α
2
+α)=3A
n
α
1
一2A
n
α
2
+A
n
α =3(一1)
n
α
1
—2(一1)
n
α
2
+5
n
α [*]
解析
先由AB=一B,B=[α
1
,α
2
,α
3
]得到Aα
i
=一α
i
(i=1,2,3),从而求出A的部分特征值及其特征向量,再由主对角元素之和为3即可求出A的全部特征值,再由特征向量正交,求出其余的特征向量,再正交单位化,即可得到正交变换矩阵Q,从而可求出A,将β写成特征向量的线性组合即可求出A
n
β.
转载请注明原文地址:https://www.kaotiyun.com/show/PnH4777K
0
考研数学三
相关试题推荐
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是__________.
求f(x)的值域.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
曲线y=1/x+ln(1+ex)渐近线的条数为________.
设f(u)具有二阶连续导数,且
计算二重积分以及y轴为边界的无界区域。
计算下列各定积分:
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则f’(0)=
已知是矩阵的一个特征向量.问A能否相似于对角阵?说明理由.
随机试题
TheymaygotoLondon,buttheyarenotcertain().
关于碘酊和碘伏,正确的描述是
张某、方某共同出资,分别设立甲公司和丙公司。2013年3月1日,甲公司与乙公司签订了开发某房地产项目的《合作协议一》,约定如下:“甲公司将丙公司10%的股权转让给乙公司,乙公司在协议签订之日起三日内向甲公司支付首付款4000万元,尾款1000万元在次年3月
按照国务院有关规定批准开工报告的建筑工程,因故不能按期开工或者中止施工的,应当及时向批准机关报告情况,因故不能按期开工超过()的,应当重新办理开工报告的批准手续。
在进行摄人性会谈的过程中,控制会谈和转换话题的技巧不包括()。
看了《中华读书报》中《看法》栏目中的一篇读者来信《丰一吟的襟怀》,不禁引起我对新月还是残月讨论的兴趣。我从小就喜欢读丰子恺先生的书与画,觉得虽然不是轰轰烈烈,但总有一股雅趣渗透于其中。“人散后,一钩新月天如水”这幅画我也看过,也很喜欢。虽然丰先生画的是残月
通常所说的“白色污染”是指()。
陈鹤琴“五指活动”教育思想包括哪些内容?
Aswithotherformsofnonverbalcommunication,theuseoftouchtocommunicatefeelingsandemotionsvarieswidelyfromculture
ThewriterofChildeHarold’sPilgrimageis______.
最新回复
(
0
)