首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,且满足A2+2A=O。已知A的秩r(A)=2。 (Ⅰ)求A的全部特征值; (Ⅱ)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵。
设A为三阶实对称矩阵,且满足A2+2A=O。已知A的秩r(A)=2。 (Ⅰ)求A的全部特征值; (Ⅱ)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵。
admin
2018-04-18
57
问题
设A为三阶实对称矩阵,且满足A
2
+2A=O。已知A的秩r(A)=2。
(Ⅰ)求A的全部特征值;
(Ⅱ)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)设λ为A的一个特征值,对应的特征向量为α,则Aα=λα(α≠0),且 A
2
α=λ
2
α。 于是 (A
2
+2A)α=(λ
2
+2λ)α。 由A
2
+2A=O可知 (λ
2
+2λ)α=0。 又因α≠0,故有λ
2
+2λ=0,故λ=一2或λ=0。 因为实对称矩阵A必可以对角化,且r(A)=2。所以 [*] 因此,矩阵A的全部特征值为λ
1
=λ
2
=一2,λ
3
=0。 (Ⅱ)矩阵A+kE仍为实对称矩阵,由(Ⅰ)知,A+kE的全部特征值为一2+k,一2+k,k。 于是,当k>2时,矩阵A+kE的全部特征值大于零,即矩阵A+kE为正定矩阵。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DpX4777K
0
考研数学三
相关试题推荐
设有正项级数是它的部分和.(1)证明收敛;(2)判断级数是条件收敛还是绝对收敛,并给予证明.
设数列{an}满足条件:a0=3,a1=1,an-2一n(n—1)an=0(n≥2).S(x)是幂级数的和函数.(1)证明:S”(x)一S(x)=0;(2)求S(x)的表达式.
设总体X服从参数λ=2的指数分布,X1,X2,…,Xn是来自总体X的简单随机样本,和S2分别为样本均值和样本方差,已知E[(3一a)S2—]=A,则a的值为
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=一α1—3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.①求A的特征值.②求A的特征向量.③求A*一6E的秩.
设随机变量X的密度函数为则下列服从标准正态分布的随机变量是
设①求作可逆矩阵P,使得(AP)TAP是对角矩阵.②k取什么值时A+kE正定?
设f(x)=试问当α取何值时,f(x)在点x=0处,①连续;②可导;③一阶导数连续;④二阶导数存在.
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
随机试题
慢性肾功能不全的患者会出现的表现有
计算机在进行算术和逻辑运算时,运算结果不可能产生溢出的是______。
一组三个标准混凝土梁形试件,经抗折试验,测得的极限破坏荷载分别是35.52kN、37.65kN、43.53kN,则最后的试验结果是()MPa。
陆地生态系统生物量是衡量环境质量变化的主要标志,应采用()进行测定。
参加单位工程验收的人员应具备工程建设相关专业的中级以上技术职称并具有()年以上从事工程建设相关专业的工作经历,参加单位工程验收的签字人员应为各方项目负责人。
某企业现着手编制2017年6月份的现金收支计划,预计2017年6月初现金余额为8000元,月初应收账款4000元,预计月内可收回80%;本月销货50000元,预计月内收款比例为50%;本月采购材料8000元,预计月内付款70%;月初应付账款余额5
以下是在一场关于“人工流产是否合理”的辩论中正反方辩手的发言。正方:反方辩友反对人工流产最基本的根据是珍视人的生命。人的生命自然要珍视,但是反方辩友显然不会反对,有时为了人类更高的整体性长远性利益,不得不牺牲部分人的生命,例如在正义战争中我们见到的那样。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
CollegesportsintheUnitedStatesareahugedeal.AlmostallmajorAmericanuniversitieshavefootball,baseball,basketball
Whatarethemanandwomandoing?
最新回复
(
0
)