首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+...+xn(n≥1). 证明:方程fn(x)=1有唯一的正根xn.
设fn(x)=x+x2+...+xn(n≥1). 证明:方程fn(x)=1有唯一的正根xn.
admin
2019-09-23
93
问题
设f
n
(x)=x+x
2
+...+x
n
(n≥1).
证明:方程f
n
(x)=1有唯一的正根x
n
.
选项
答案
令Φ
n
(x)=f
n
(x)-1,因为Φ
n
(0)=-1<0,Φ
n
(1)=n-1>0,所以Φ
n
(x)在(0,1)[*](0,+∞)内有一个零点,即方程f
n
(x)=1在(0,+∞)内有一个根。 因为Φ’
n
(x)=1+2x+...+nx
n-1
>0,所以方程Φ
n
(x)在(0,+∞)内单调增加,所以Φ
n
(x)在(0,+∞)内的零点唯一,所以方程f
n
(x)=1在(0,+∞)内有唯一正根,极为x
n
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DmA4777K
0
考研数学二
相关试题推荐
求
[*]
设二二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。求二次型f的矩阵的所有特征值;
验证下列各给定函数是其对应微分方程的解
设二次型f(x1,x2,x3)=x12+x22+x32-2x1x2-2x1x3+2ax2x3通过正交变换化为标准形f=2y12+2y22+by32。求f在xTx=3下的最大值。
设当x→x0时,f(x)不是无穷大,则下述结论正确的是()
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
若x→0时与xsinx是等价无穷小量,试求常数a.
[2003年]设函数f(x)=问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
随机试题
以下咬合因素中与颞下颌关节的相关程度较低者是
Curling溃疡发生机制为
对于贝尔面瘫急性期的患者,以下哪项治疗是不恰当的
下列哪种制剂不属于主动免疫
下列导致国有建设用地使用权人改变的行为中,通常为无偿的有()。
某公司正在开会讨论是否投产一种新产品,对以下收支发生争论。你认为不应列入该项目评价的相关现金流量有()。
注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力和贯彻执行能力的测试。2.作答参考时限:阅读材料30分钟,作答90分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”依次作答。
在北欧,尤其是奥斯陆的大街上,你会感到城市有一种非常舒服的整体性。它没有历史与现代的断裂与分离,而是和谐地浑然一体。这不仅是建筑外部,连建筑内部乃至家具风格也是一样。今天的他们依旧喜欢用新鲜的原木把屋顶装饰得像昔时的农舍,喜欢木头立柱,喜欢没有花纹雕饰的桌
马丁.路德
社会主义改造时期国家资本主义的高级形式主要是()
最新回复
(
0
)