首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2017-10-19
57
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得 F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x一x
1
)f(x)恒正或恒负,于是∫
0
π
sin(x—x
1
)f(x)dx≠0. 而∫
0
π
sin(x一x
1
)f(x)dx=cosxi∫
0
π
f(x)sinxdx一sinxi∫
0
π
f(x)cosxdx=0,矛盾,所以f(x)在(0,π)内至少有两个零点,不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔中值定理,存在π∈(x
1
,x
2
)[*](0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DaH4777K
0
考研数学三
相关试题推荐
设随机变量X的概率分布为P{X=k}=aCnkpkqn-k(k=1,2,…,n,q=1一p),则EX=
掷一枚不均匀的硬币,设正面出现的概率为P,反面出现的概率为q=1-p,随机变量X为一直掷到正面和反面都出现为止所需要的次数,则X的概率分布为__________.
设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(x,y)|0≤y≤x≤2一y}.试求:(I)X+Y的概率密度;(Ⅱ)X的边缘概率密度;(Ⅲ)P{Y≤0.2|X=1.5}.
n为给定的自然数,极限=____________.
反常积分
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2—α3,α2+α3线性相关,则a=
设线性相关,则a=__________.
设向量组α1,α2,α3,α4线性无关,则向量组().
设函数f(u)有连续的一阶导数,f(2)=1,且函数满足求x的表达式.
随机试题
不宜用激素类药物的疾病是
患者,男性,36岁,超声体检发现左肾病变,呈圆形,边界清晰,整齐光滑,直径1.0cm,肿物内为无回声,后方回声明显增强。根据声像图特征,诊断是
重点产业技术发展方向中需要重点发展的右()。
1.背景某项目部负责施工的某市移动通信基站安装工程,包括39个基站的安装及调测工作,工程工期要求60天,保修期1年。项目部在完成了5个基站以后,建设单位提出本工程项目完成一个基站、验收一个基站、投产一个基站。本工程的设计比较细致,工程中未发生设计变更;项
根据《建设工程消防监督管理规定》,建设单位申请消防验收应当提供的材料有()。
界定从事会计工作和提供会计信息的空间范围的会计基本前提是()。
下列心理现象属于认知过程的是()。
若一个圆的直径X服从区间[2,3]上的均匀分布,则该圆面积的数学期望为().
现有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。表示该遗传关系最适合的数据结构为______
TheproblemofacidrainoriginatedwiththeIndustrialRevolution,andithasbeengrowingeversince.Themoreaccuratescie
最新回复
(
0
)