首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2),并且f(x)在x=0处连续. 证明:函数f(x)在任意点x0处连续.
设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2),并且f(x)在x=0处连续. 证明:函数f(x)在任意点x0处连续.
admin
2016-09-13
68
问题
设f(x)对一切x
1
,x
2
满足f(x
1
+x
2
)=f(x
1
)+f(x
2
),并且f(x)在x=0处连续.
证明:函数f(x)在任意点x
0
处连续.
选项
答案
已知f(x
1
+x
2
)=f(x
1
)+f(x
2
),令x
2
=0,则f(x
1
)=f(x
1
)+f(0),可得f(0)=0,又f(x)在x=0处连续,则有[*]=f(0)=0,而f(x
0
+△x)-f(x
0
)=f(x
0
)+f(△x)-f(x
0
)=f(△x),两边取极限得到[*]=0,故函数f(x)在任意点x
0
处连续.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DPT4777K
0
考研数学三
相关试题推荐
处理好民族问题、促进民族团结,是关系祖国统一和边疆巩固的大事,是关系民族团结和社会稳定的大事,是关系国家长治久安和中华民族繁荣昌盛的大事。大学生都要像爱护自己的眼睛一样维护民族团结,像爱护自己的生命一样维护社会稳定,自觉做民族团结进步事业的建设者、维护者、
具体劳动和抽象劳动的关系是()。
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
证明[*]
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
求下列函数在指定区间上的最大值、最小值:
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
随机试题
癌性胸水具有下列哪项特点
关于子宫下段,说法错误的是
甲公司向乙银行贷款1000万元,约定2005年12月2日一次性还本付息。丙公司以自己的一栋房屋作抵押。甲到期没有清偿债务,乙银行每个月都向其催收,均无效果,最后一次催收的时间是2007年3月6日。乙银行在下列哪一时间前行使抵押权,才能得到法院的保护?(
因特网是一个连接了无数个小网而形成的大网,也就是说()。
背景资料某施工单位与建设单位签订了路基工程施工承包合同,包括桥涵两座和路基填筑工程,合同工期390天,合同总价5000万元。施工前施工单位向工程师提交了施工组织设计和施工进度计划。该工程在施工过程中发生了如下事件:(1)因地质勘探报告不详,出现
对于一般工业与民用建筑工程而言,单位工程概算按其工程性质分为建筑工程概算和设备及安装工程概算两大类。下列各项属于设备及安装工程概算的是()。
证券公司应当按上一年营业费用总额的( )计算营运风险的风险准备。
千百年来,“偏见”一词一直是带贬义的。在人们心目中,偏见就意味着错误,是思想认识的大敌,因此,人人都不应当有偏见。偏见是如此不受欢迎,以至于各个领域的思想家无不以扫除偏见为己任,以便达到无偏见的认识。在人们心中存在着一种根深蒂固的观念:偏见是应当消除而且
洋务派对时局的看法及变法主张
Theinterviewisbasedonasociologicalsurvey.
最新回复
(
0
)