首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2017年)设为3阶矩阵.P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1+α2+α3)=
(2017年)设为3阶矩阵.P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1+α2+α3)=
admin
2018-07-30
100
问题
(2017年)设为3阶矩阵.P=(α
1
,α
2
,α
3
)为可逆矩阵,使得P
-1
AP=
,则A(α
1
+α
2
+α
3
)=
选项
A、α
1
+α
2
.
B、α
2
+2α
3
.
C、α
1
+α
3
.
D、α
1
+2α
2
.
答案
B
解析
方法1:由已知的P
-1
AP=
A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]
.
[α
1
,Aα
2
,Aα
3
]=[0 α
2
2α
5
]
Aα
1
=0,Aα
2
=α
2
,A
3
=2α
4
A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=0+α
2
+2α
3
=α
2
+2α
3
故只有选项(B)正确.
方法2:由题设条件知方阵A相似于对角阵diag{0,1,2},因此A的特征值为0.1,2,而矩阵P的3个列向量依次为对应的特征向量,即有
Aα
1
=0,Aα
2
=α
2
,Aα
3
=2α
3
从而有
A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=0+α
2
+2α
3
=α
2
+2α
3
转载请注明原文地址:https://www.kaotiyun.com/show/D9j4777K
0
考研数学二
相关试题推荐
A是二阶矩阵,有特征值λ1=1,λ2=2,f(x)=x2一3x+4,则f(A)=________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
已知曲线y=f(x)过点(0,-1/2),且其上任一点(x,y)处的切线斜率为xln(1+x2),则f(x)=__________.
设f(x)在[0,0](a>0)上非负且二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:
(2011年试题,二)微分方程y’+y=e-x满足条件y(0)=0的解为y=_________
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
随机试题
关于乙状结肠扭转的叙述,哪项是不正确的
女性患儿5岁,自幼青紫,确诊为法洛四联症,为预防脑缺氧发作,下列哪项措施是正确的
A.朱砂安神丸B.炙甘草汤C.真武汤D.天王补心丹E.知柏地黄丸阴虚火旺型心悸,若见虚烦神疲,心悸不安者,方宜选
抗原抗体复合物吸引在一起依靠
(2005)将一个灯由桌面竖直向上移动,在移动过程中,不发生变化的量是()。
在企业价值评估报告中反映企业股东全部权益价值的指标是()。
以死亡为给付保险金条件的合同所签发的保险单,未经(),不得转让或质押。
甲企业为增值税一般纳税人,主要从事电冰箱的生产和销售,2017年6月发生如下事项:(1)购进生产钢材一批,取得的增值税专用发票上注明税额47.6万元,委托某运输企业将该批钢材运回,取得承运部门开具的增值税专用发票上注明税额1.1万元。(2)进口钢材一批
对认知和技能领域的学业成就的评价,最常用的评价手段是和教师自编测验。
“主观为自己,客观为他人”是合理利己主义的代表性观点,是一种消极的人生观。这种观点违背的理论依据是()
最新回复
(
0
)