首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设n元实二次型f(x1,x2,…,x3)=xTAx,其中A又特征值λ1,λ2,…,λn,且满足λ1≤λ2≤…≤λn. 证明对任何n维列向量x,有 λ1xTx≤λ2xTx≤…≤λnxTx. (2)设f(x1,x2,x3)=(x1,x2,x3)=xTAx
(1)设n元实二次型f(x1,x2,…,x3)=xTAx,其中A又特征值λ1,λ2,…,λn,且满足λ1≤λ2≤…≤λn. 证明对任何n维列向量x,有 λ1xTx≤λ2xTx≤…≤λnxTx. (2)设f(x1,x2,x3)=(x1,x2,x3)=xTAx
admin
2020-02-28
78
问题
(1)设n元实二次型f(x
1
,x
2
,…,x
3
)=x
T
Ax,其中A又特征值λ
1
,λ
2
,…,λ
n
,且满足λ
1
≤λ
2
≤…≤λ
n
.
证明对任何n维列向量x,有
λ
1
x
T
x≤λ
2
x
T
x≤…≤λ
n
x
T
x.
(2)设f(x
1
,x
2
,x
3
)=(x
1
,x
2
,x
3
)
=x
T
Ax,当x
1
2
+ x
2
2
+ x
3
2
=1时,求f(x
1
,x
2
,x
3
)的最大值.
选项
答案
(1)f(x
1
,x
2
,…,x
3
)是实二次型,有正交变换x=Qy,其中Q是正交矩阵,使得 [*] 因λ
1
≤λ
2
…≤λ
n
,故得 λ
1
(y
1
2
+y
2
2
+…+ y
n
2
)≤λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
≤λ
n
(y
1
2
+y
2
2
+…+ y
n
2
). 因x=Qy,其中Q是正交阵,Q
T
Q=E,故 x
T
x=(Qy)
T
Qy=y
T
Q
T
Qy= y
T
y, 故有λ
1
x
T
x≤x
T
Ax≤λ
n
x
T
x. (2)[*] A有特征值λ
1
=0<λ
2
=4<λ
3
=9. 由上一题知,当x
1
2
+x
2
2
+ x
3
2
= x
T
x=1时,对任何x,有 f(x
1
,x
2
,x
3
)=x
T
x≤λ
3
x
T
x=9. 即此时f(x
1
,x
2
,x
3
)的最大值为9.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/CxA4777K
0
考研数学二
相关试题推荐
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求矩阵A的特征值与特征向量;
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;(Ⅱ)(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然数,
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为_______
[2008年]求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
求函数f(x,y)=x2+y2一12x+16y在区域D={(x,y)|x2+y2≤25}上的最大值和最小值.
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记求二元函数f(x,y)=(x2+y2≠0)的最大值,并求最大值点.
随机试题
女性,37岁,有风湿性心脏病、二尖瓣狭窄病史5年,近年来出现胸闷、气急伴咳嗽,有咯血史。体格检查发现口唇发绀。估计其二尖瓣瓣口面积在
以镇心安神,清热养血为主要功用的方剂是
全科医学的医学模式基础是
统计工作的四个基本步骤为
深化科技体制改革,进一步优化科技结构布局,充分激发全社会的创新活力,继续推进科技体制改革形成科技创新的整体合力,充分发挥()的主导作用。
法人申请挂失补办证券账户卡所需的申请材料有()。
通常说的“挤兑”是指银行面临的()。
用“发展、诚信、事业、智慧、小康”编一个故事。
2015年,全国固定资产投资(不含农户)551590亿元,比上年增长10.0%。其中第一产业投资15561亿元,比上年增长31.8%;第二产业投资224090亿元,增长8%;第三产业投资311939亿元,增长10.6%。2015年,制造业固定资产投资
(2011年简答53)简述诚实信用原则的含义和功能。
最新回复
(
0
)