首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
admin
2019-03-23
66
问题
设齐次线性方程组
的系数矩阵为A=
,设M
i
(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:
如果A的秩为n—1,则方程组的所有解向量是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
选项
答案
因为R(A)=n—1,所以方程组的基础解系所含解向量的个数为n—(n—1)=1,同时因为R(A)=n—1,说明A中至少有一个(n—1)阶子式≠0,即M
1
,M
2
,…,M
n
不全为0,于是(M
1
,—M
2
,…,(—1)
n—1
M
n
)是方程组的一个非零解,它可作为方程组的一个基础解系。故方程组的解都是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/CXV4777K
0
考研数学二
相关试题推荐
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
设B是3阶实对称矩阵,特征值为1,1,-2,并且α=(1,-1,1)T是B的特征向量,特征值为-2.求B.
已知α=(1,1,-1)T是A=的特征向量,求a,b和α的特征值λ.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
已知齐次方程组同解,求a,b,c.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
证明:χ-χ2<ln(1+χ)<χ(χ>0).
设函数f(x,y)=讨论f(x,y)在(0,0)点的可微性.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
随机试题
(2005年第30题)胆固醇合成的限速酶是
某建设工程,招标人决定采用公开招标的形式进行招标,资格审查的方式为资格预审。其招投标工作程序如下:(1)招标备案、确定招标方式。(2)发送投标邀请书。(3)编制、发出招标文件。(4)踏勘现场、答疑。(5)编制、发放资
关于分部工程、单位工程验收程序,以下说法错误的是()。
2013年1月1日,甲公司自证券市场购入面值总额为2000万元的债券。购入时实际支付价款2078.98万元,另支付交易费用10万元。该债券发行日为2013年1月1日,系分期付息、到期还本债券,期限为5年,票面年利率为5%,实际年利率为4%,每年12月31日
银行卡交电费,当卡内钱够支付的时候,钱自动转入账户,如果卡内钱不够,则立即停电。则这种银行卡属于()。
王老师在教学中比较重视基本概念、原理及学习方法的教授。他所遵循的学习理论是()。
娱乐场所应当建立巡查制度,发现娱乐场所内有毒品违法犯罪活动的,应当立即向()报告。
关于我国河流的描述,与实际不符的是()。
根据公务员工作职责和提高素质的需要,对公务员应当进行分级分类培训。机关对新录用公务员应当在()。
Itisonlyrightthatthestarsshouldbepaidinthisway.Don’tthetopmeninindustryearn【B1】______salariesfortheservic
最新回复
(
0
)