首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=,则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是( )
设α1=,则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是( )
admin
2019-05-12
31
问题
设α
1
=
,则3条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充要条件是( )
选项
A、α
1
,α
2
,α
3
线性相关.
B、α
1
,α
2
,α
3
线性无关.
C、R(α
1
,α
2
,α
3
)=R(α
1
,α
2
).
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关.
答案
D
解析
将上述方程组写成矩阵形式:A
3×2
X=b,其中A=
=(α
1
,α
2
)是其系数矩阵,b=
=-α
3
.
A项α
1
,α
2
,α
3
线性相关,当α
1
=α
2
=α
3
时,方程组AX=b的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则方程组有无穷多解,根据解的个数与直线的位置关系.3条直线重合,A不成立.
B项α
1
,α
2
,α
3
线性无关,α
3
不能由α
1
,α
2
线性表出,方程组AX=b的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解的个数与直线的位置关系,3条直线无交点,B不成立.
C项R(α
1
,α
2
,α
3
)=R(α
1
,α
2
),当R(α
1
,α
2
,α
3
)=R(α
1
,α
2
)=1时,3条直线重合,不只交于一点,故C不成立.
转载请注明原文地址:https://www.kaotiyun.com/show/CV04777K
0
考研数学一
相关试题推荐
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|∫abf(x)dx-(b-a)f(a)|≤1/2(b-a)2.
将函数f(x)=arctan展开成x的幂级数.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.求矩阵A的全部特征值;
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,X2n(n>2).令Xi,求统计量U=的数学期望.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设L:.求曲线L与x轴所围成平面区域D的面积.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
设u=u(x,y),v=v(x,y)有连续的一阶偏导数且满足条件:F(u,v)=0,其中F有连续的偏导数且
假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
随机试题
“许多事情我们可以讲一千个理由、一万个理由,但老百姓吃不上饭,就没有理由。‘民以食为天’。”这段话表明()。
Althoughthemanisgoodatpainting,wedon’tthinkheis______anartist.
肿瘤标志物质
做出这一诊断的行为属于医疗保健机构为育龄妇女和孕产妇提供的孕产期保健服务活动中的实施医师的医学意见时应当
圆筒形格体钢板桩围堰,一般适用的挡水高度小于(),可以建在岩基或非岩基上,也可作过水围堰用。
国际多式联运的优点主要表现在()。
我国会计法律制度分为会计法律、会计行政法规、会计规章、地方性会计法规和会计规范性文件5个层次。下列各项中,属于会计行政法规的有( )。
数学课的教学,要培养学生处理数量问题的技能和有效运用这些技能于生活、学习、工作中的能力。这说明课程内容的组织需要坚持()。
在很多人眼里,科研创新是艰深、枯燥、乏味的“苦差事”,但我国著名数学家谷超豪院士,却将自己的三大研究领域——微分几何、偏微分方程和数学物理,亲昵地称为“金三角”,并告诉别人:“别看它们表面上枯燥,其实只要深入进去,就会发现其中奥妙无穷,充满快乐,而正是这快
简述请求恢复原状应具备的条件。
最新回复
(
0
)