首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证: (Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn; (Ⅱ)(1+xn)收敛; (Ⅲ)Fn(x)=+∞。
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证: (Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn; (Ⅱ)(1+xn)收敛; (Ⅲ)Fn(x)=+∞。
admin
2018-11-16
127
问题
设函数
,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证:
(Ⅰ)F
n
(x)在(0,+∞)存在唯一零点x
n
;
(Ⅱ)
(1+x
n
)收敛;
(Ⅲ)
F
n
(x)=+∞。
选项
答案
(Ⅰ)F
n
(x)在[0,+∞)内可导(也就必然连续),又[*],故F
n
(x)在[*]存在零点,记为x
n
,则F
n
(x
n
)=0,又[*],从而F
n
(x)在[0,+∞)单调上升,因此F
n
(x)在(0,+∞)有唯一零点,就是这个x
n
。 (Ⅱ)在前面的证明中已得估计式[*],因[*]收敛,由比较原理知[*]收敛,又In(1+x
n
)~x
n
(n→∞),故[*](1+x
n
)收敛。 (Ⅲ)方法一:前面已导出[*],从而[*]有[*]。又[*],故[*]。 方法二:直接由[*]同样得[*]。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ByW4777K
0
考研数学三
相关试题推荐
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
二次型f(x1,x2,x3)=(x1一2x2)2+4x2x3的矩阵为________.
设二维随机变量(X,Y)的联合密度为f(x,y)=求c;
设两台同样的记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动,求两台记录仪无故障工作的总时间T的概率密度.
随机变量(X,Y)的联合密度函数为f(x,y)=求(x,y)落在区域x2+y2≤内的概率.
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
(1)设X1,X2,…,Xn是来自参数为λ的泊松分布总体的一个样本,试求λ的最大似然估计量和矩估计量.(2)设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度为试求λ的矩估计.
设z=f(x,y),x=g(y,z)+其中f,g,φ在其定义域内均可微,求
设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y"—2xy’—4y=0,y(0)=0,y’(0)=1(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求y(x)的表达式。
随机试题
在我国社会主义初级阶段,确立以公有制为主体、多种所有制经济长期共同发展这一基本经济制度,其基本根据是什么?
可引起慢性病毒性肝炎的病原是
通常情况下,造价不高且适宜在低路堤上使用的涵洞形式有()。
企业因固定资产盘亏造成的待处理非流动资产净损失属于企业的资产。()
企业所有者权益在数量上等于()。
某产品每周的需求呈正态分布,均值d=1000件,标准差Sd=10件,提前期是3周。问该产品提前期内需求(DDLT)的均值X′和标准差S′d分别是()。
与其他图形不一样的是:
法的规范作用可以概括为()。
不需要证人在场见证即有效的遗嘱是______。
Searchingforloveisnolongerjustafavoritesubjectforsongs.Ithasalsobecomeahugeindustry.Expertssaythatthe
最新回复
(
0
)