首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f’’(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f’’(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
admin
2017-12-23
44
问题
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f’’(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
选项
答案
因为f’’(x)≥0,所以f’(x)单调不减,当x>0时,f’(x)≥f’(0)=1. 当x>0时,f(x)-f(0)=f’(ξ)x,从而f(x)≥f(0)+x,因为[*] 由f(x)在[0,+∞)上连续,且f(0)=-2<0,[*]=+∞,则f(x)=0在(0,+∞)内至少有一个根,又由f’(x)≥1>0,得方程的根是唯一的.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Bhk4777K
0
考研数学二
相关试题推荐
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
交换二次积分的次序:
若f(x)是连续函数,证明
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f’(ξ)+f’(η)=ξ2+η2.
设sOy,平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
A、B、C、D、A利用恒等式sin4x+cos4x=(cos’x—sin’x)’+2sin’xcos’x=cos2x可得故应选A.
设,试讨论f(x)在x=0处的连续性和可导性.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设y=sin4x+cos4x,求y(n).
随机试题
空气中的水分和()是影响金属锈蚀的主要因素。
如何对ABS液压蓄能器进行卸压?
骨折晚期并发症有
下列除哪项表现外均为表证
A.呋塞米B.卡托普利C.多巴胺D.美托洛尔E.地高辛长期应用可改善心衰患者症状,改善预后的药物是()。
关于中国周边岛屿,下列说法错误的是()。
关于建设工程生产安全事故应急预案体系说法正确的是()。
某商场在开业前要选择经营商品的种类,现有甲、乙、丙、丁四类商品可供选择。由于对未来市场需求无法做到比较精确的预测,只能大致估计为:需求量较高、需求量中等、需求量较低三种情况。这三种情况的预计损益值如下表所示。用乐观准则选择比较满意的品种是().
Tommy经营五金器具生意,BlueLagoonLtd.的常务董事Tsang,首次与他谈起为公司建筑工程提供所需水泥和钢筋的事宜。在他们就供货进行谈判时,Tommy企业的合伙人James建议Tommy,在承诺此公司前浏览一下该公司的章程。详细解释:
[A]absorption[I]logos[B]implications[J]ambiguous[C]initiate[K]alike[D]newscasters[L]overwhelming[E]manuscrip
最新回复
(
0
)