首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)= f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)= f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2019-09-27
23
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=
f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=[*], 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ′(ξ
1
(1)
)=φ′(ξ
2
(1)
)=…=φ′(ξ
n
(1)
)=0,即φ′(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 f(c)=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/BhS4777K
0
考研数学一
相关试题推荐
设随机变量X和Y分分别服从,已知P{X﹦0,Y﹦0}﹦。(I)求(X,Y)的联合分布律;(Ⅱ)求X和Y的相关系数;(Ⅲ)求P{X﹦1|X2﹢Y2﹦1}。
设矩阵A﹦,当a为何值时,存在可逆矩阵P,使得P-1AP﹦A,并求出此时的矩阵P和相应的对角矩阵A。
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
计算曲面积分I=xzdydz+2zydzdx+3xydxdy,其中∑为曲面z=1-x2-(0≤z≤1)的上侧。
判断级数的敛散性.
设其中函数f,g具有二阶连续偏导数,求
求不定积分
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.(1)求A的特征值.(2)判断A是否相似于对角矩阵?
设f(x,y)在平面区域D={(x,y)|x2+y2≤1)上有二阶连续偏导数,且,l为D的边界正向一周.(Ⅰ)证明;(Ⅱ)求二重积分.
随机试题
甲公司2015年与2014年相比,销售收入增长10%,净利润增加12%,总负债增加9%,所有者权益不变。则2015年与2014年相比,下列叙述错误的是()。
A.气虚阳虚B.邪正俱衰C.邪正俱盛D.邪去正复E.邪盛正衰战汗后汗出热退、脉静身凉的临床意义是
洪某在某家电公司购买了一台21寸松下牌彩电,因杂音较重,根据“三包”的规定,洪某享有选择权,他便要求家电公司更换一台,这时,洪某与家电公司的债的转变过程是()。
对盘盈的原材料报经批准,作出处理后,编制的分录应借记()。
盈利能力分析一般应包括()。
西汉昭帝追封孔子为褒成宣尼公,东晋时皇帝亲自祭奠孔子,宋代下诏必须避讳孔子的名字,清代康熙皇帝对孔子行三跪九拜之礼。这一现象表明()。
素质教育就是培养学生的特长的教育。
如果两个变量之间有一定的相关性,则以下结论中正确的是()
Java中的继承机制之所以能够降低程序的复杂性,提高编程的效率,主要是因为它使代码可【】。
Freudderivedpsychoanalyticknowledgeofchildhoodindirectly:hereconstructedchildhoodprocessesfromadult______.
最新回复
(
0
)